English

If F ( X ) = 2 X 1 + X 2 , Show that F(Tan θ) = Sin 2θ. - Mathematics

Advertisements
Advertisements

Question

If \[f\left( x \right) = \frac{2x}{1 + x^2}\] , show that f(tan θ) = sin 2θ.

 

 

Solution

Given:

\[f\left( x \right) = \frac{2x}{1 + x^2}\]

Thus,

\[f\left( \tan\theta \right) = \frac{2\left( \tan\theta \right)}{1 + \tan^2 \theta}\]

\[= \frac{2 \times \frac{\sin \theta}{\cos \theta}}{1 + \left( \frac{\sin^2 \theta}{\cos^2 \theta} \right)}\]

\[ = \frac{2 \sin \theta}{\cos \theta} \times \frac{\cos^2 \theta}{\cos^2 \theta + \sin^2 \theta}\]

\[ = \frac{2 \sin \theta \cos \theta}{1} \left[ \because \cos^2 \theta + \sin^2 \theta = 1 \right]\]

\[ = \sin 2\theta \left[ \because 2 \sin \theta \cos \theta = \sin 2\theta \right]\]

Hence,  f (tan θ) = sin 2θ.

 
shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Functions - Exercise 3.2 [Page 11]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 3 Functions
Exercise 3.2 | Q 8 | Page 11

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Let f be the subset of Z × Z defined by f = {(ab, a + b): a, b ∈ Z}. Is f a function from Z to Z: justify your answer.


Let A = {−2, −1, 0, 1, 2} and f : A → Z be a function defined by f(x) = x2 − 2x − 3. Find:

(b) pre-images of 6, −3 and 5.

 

Let f : R+ → R, where R+ is the set of all positive real numbers, such that f(x) = loge x. Determine

(a) the image set of the domain of f


If  \[y = f\left( x \right) = \frac{ax - b}{bx - a}\] , show that x = f(y).

 

 


Let f : [0, ∞) → R and g : R → R be defined by \[f\left( x \right) = \sqrt{x}\] and g(x) = x. Find f + gf − gfg and \[\frac{f}{g}\] .

 
 

Let f(x) = |x − 1|. Then,


If  \[f\left( x \right) = \frac{2^x + 2^{- x}}{2}\] , then f(x + yf(x − y) is equal to

 


If 2f (x) − \[3f\left( \frac{1}{x} \right) = x^2\] (x ≠ 0), then f(2) is equal to

 

If  \[f\left( x \right) = \frac{\sin^4 x + \cos^2 x}{\sin^2 x + \cos^4 x}\] for x ∈ R, then f (2002) = 


If : [−2, 2] → R is defined by \[f\left( x \right) = \begin{cases}- 1, & \text{ for }  - 2 \leq x \leq 0 \\ x - 1, & \text{ for }   0 \leq x \leq 2\end{cases}\] , then
{x ∈ [−2, 2] : x ≤ 0 and f (|x|) = x} =

 

If f(x) = sin [π2x + sin [−π]2 x, where [x] denotes the greatest integer less than or equal to x, then


The domain of definition of the function \[f\left( x \right) = \sqrt{\frac{x - 2}{x + 2}} + \sqrt{\frac{1 - x}{1 + x}}\] is 

 

The domain of definition of  \[f\left( x \right) = \sqrt{4x - x^2}\] is 

 

Check if the following relation is function:


Check if the following relation is function:


If f(m) = m2 − 3m + 1, find f(−3)


Check if the relation given by the equation represents y as function of x:

x2 − y = 25


If f(m) = m2 − 3m + 1, find `f(1/2)`


Find the domain and range of the follwoing function.

h(x) = `sqrt(x + 5)/(5 + x)`


Check the injectivity and surjectivity of the following function.

f : Z → Z given by f(x) = x2 


Solve for x.

2 log10 x = `1 + log_10 (x + 11/10)`


If x = loga bc, y = logb ca, z = logc ab then prove that `1/(1 + x) + 1/(1 + y) + 1/(1 + z)` = 1


Select the correct answer from given alternatives.

If log10(log10(log10x)) = 0 then x =


Answer the following:

Identify the following relation is the function? If it is a function determine its domain and range.

{(2, 1), (4, 2), (6, 3), (8, 4), (10, 5), (12, 6), (14, 7)}


Answer the following:

If f(x) = 3x + a and f(1) = 7 find a and f(4)


Answer the following:

If b2 = ac. prove that, log a + log c = 2 log b


Answer the following:

If `log"a"/(x + y - 2z) = log"b"/(y + z - 2x) = log"c"/(z + x - 2y)`, show that abc = 1


Answer the following:

Find the domain of the following function.

f(x) = `sqrt(x - x^2) + sqrt(5 - x)`


Answer the following:

Find the range of the following function.

f(x) = `x/(9 + x^2)`


The domain of the function f(x) = `sqrtx` is ______.


The range of the function f(x) = `(x^2 - 3x + 2)/(x^3 - 4x^2 + 5x - 2)` is ______


Find the domain of the following function given by:

f(x) = `(3x)/(2x - 8)`


Redefine the function f(x) = x − 2 + 2 + x , – 3 ≤ x ≤ 3


Find the domain and range of the function f(x) = `1/sqrt(x - 5)`


The domain and range of the real function f defined by f(x) = `(4 - x)/(x - 4)` is given by ______.


The domain and range of the function f given by f(x) = 2 – |x – 5| is ______.


The range of the function y = `1/(2 - sin3x)` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×