English

Prove that alogcb = blogca - Mathematics and Statistics

Advertisements
Advertisements

Question

Prove that alogcb = blogca

Sum

Solution

Let x = alogcb, y = blogca 

∴ log x = log [alogcb], log y = log [blogca]

∴ log x = logcb log a, log y = logca log b

∴ log x = `log"b"/log"c".log"a", logy = log"a"/log"c".log"b"`

∴ log x = log y

∴ x = y

∴ alogcb = blogca

shaalaa.com
  Is there an error in this question or solution?
Chapter 6: Functions - Exercise 6.1 [Page 119]

RELATED QUESTIONS

Let A = {−2, −1, 0, 1, 2} and f : A → Z be a function defined by f(x) = x2 − 2x − 3. Find:

(b) pre-images of 6, −3 and 5.

 

Let f : R+ → R, where R+ is the set of all positive real numbers, such that f(x) = loge x. Determine

(a) the image set of the domain of f


Let X = {1, 2, 3, 4} and Y = {1, 5, 9, 11, 15, 16}
Determine which of the set are functions from X to Y.

(b) f2 = {(1, 1), (2, 7), (3, 5)}


et A = (12, 13, 14, 15, 16, 17) and f : A → Z be a function given by
f(x) = highest prime factor of x.
Find range of f.


The function f is defined by \[f\left( x \right) = \begin{cases}x^2 , & 0 \leq x \leq 3 \\ 3x, & 3 \leq x \leq 10\end{cases}\]

The relation g is defined by \[g\left( x \right) = \begin{cases}x^2 , & 0 \leq x \leq 2 \\ 3x, & 2 \leq x \leq 10\end{cases}\]

Show that f is a function and g is not a function.


If f(x) = x2 − 3x + 4, then find the values of x satisfying the equation f(x) = f(2x + 1).

 

Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function: 

(vi)  \[2f - \sqrt{5} g\]

 

f is a real valued function given by \[f\left( x \right) = 27 x^3 + \frac{1}{x^3}\] and α, β are roots of \[3x + \frac{1}{x} = 12\] . Then,

 
 

The domain of the function

\[f\left( x \right) = \sqrt{2 - 2x - x^2}\] is
 

The domain of definition of  \[f\left( x \right) = \sqrt{x - 3 - 2\sqrt{x - 4}} - \sqrt{x - 3 + 2\sqrt{x - 4}}\] is 

 


The range of the function \[f\left( x \right) = \frac{x + 2}{\left| x + 2 \right|}\],x ≠ −2 is

 

If  \[\left[ x \right]^2 - 5\left[ x \right] + 6 = 0\], where [.] denotes the greatest integer function, then 

 


If ƒ(m) = m2 − 3m + 1, find f(x + 1)


If f(x) = `{(x^2 + 3","  x ≤ 2),(5x + 7","  x > 2):},` then find f(0)


Which sets of ordered pairs represent functions from A = {1, 2, 3, 4} to B = {−1, 0, 1, 2, 3}? Justify.

{(1, 0), (3, 3), (2, −1), (4, 1), (2, 2)}


If f(m) = m2 − 3m + 1, find f(−3)


If f(m) = m2 − 3m + 1, find `f(1/2)`


Find x, if g(x) = 0 where g(x) = 6x2 + x − 2


Find x, if f(x) = g(x) where f(x) = `sqrt(x) - 3`, g(x) = 5 – x


Express the area A of circle as a function of its radius r


Express the area A of circle as a function of its circumference C.


Express the following exponential equation in logarithmic form

e–x = 6


Write the following expression as sum or difference of logarithm

In `[(root(3)(x - 2)(2x + 1)^4)/((x + 4)sqrt(2x + 4))]^2`


If f(x) = 3x + 5, g(x) = 6x − 1, then find (f + g) (x)


Answer the following:

Find whether the following function is one-one

f : R → R defined by f(x) = x2 + 5


Answer the following:

If `log"a"/(x + y - 2z) = log"b"/(y + z - 2x) = log"c"/(z + x - 2y)`, show that abc = 1


Answer the following:

Find the domain of the following function.

f(x) = `sqrt(x - x^2) + sqrt(5 - x)`


Let X = {3, 4, 6, 8}. Determine whether the relation R = {(x, f(x)) | x ∈ X, f(x) = x2 + 1} is a function from X to N?


An open box is to be made from a square piece of material, 24 cm on a side, by cutting equal square from the corner and turning up the side as shown. Express the volume V of the box as a function of x


The range of the function f(x) = `(x^2 - 3x + 2)/(x^3 - 4x^2 + 5x - 2)` is ______


If a function f(x) is given as f(x) = x2 – 6x + 4 for all x ∈ R, then f(–3) = ______.


Domain of function f(x) = cos–1 6x is ______.


Find the domain of the following function.

f(x) = [x] + x


Find the range of the following functions given by `sqrt(16 - x^2)`


Find the domain of the following functions given by f(x) = `(x^3 - x + 3)/(x^2 - 1)`


Find the domain of the following function given by:

f(x) = `(3x)/(2x - 8)`


If f(x) = `(x - 1)/(x + 1)`, then show that `f(- 1/x) = (-1)/(f(x))`


If f(x) = y = `(ax - b)/(cx - a)`, then prove that f(y) = x.


Let f(x) and g(x) be two real polynomials of degree 2 and 1 respectively. If f(g(x)) = 8x2 – 2x, and g(f(x)) = 4x2 + 6x + 1, then the value of f(2) + g(2) is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×