English

Answer the following: Let f : R → R be given by f(x) = x + 5 for all x ∈ R. Draw its graph - Mathematics and Statistics

Advertisements
Advertisements

Question

Answer the following:

Let f : R → R be given by f(x) = x + 5 for all x ∈ R. Draw its graph

Graph
Sum

Solution

f(x) = x + 5

x 1 0 –5 –6
y = x + 5 6 5 0 –1

shaalaa.com
  Is there an error in this question or solution?
Chapter 6: Functions - Miscellaneous Exercise 6.2 [Page 131]

APPEARS IN

RELATED QUESTIONS

Define a function as a correspondence between two sets.

 

Let X = {1, 2, 3, 4} and Y = {1, 5, 9, 11, 15, 16}
Determine which of the set are functions from X to Y.

(c) f3 = {(1, 5), (2, 9), (3, 1), (4, 5), (2, 11)}

 

 


Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function: 

(ii) g − 


Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function: 

(vii) f2 + 7f


Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function: 

(viii) \[\frac{5}{8}\]

 

If fg and h are real functions defined by 

\[f\left( x \right) = \sqrt{x + 1}, g\left( x \right) = \frac{1}{x}\] and h(x) = 2x2 − 3, find the values of (2f + g − h) (1) and (2f + g − h) (0).
 
 

Let f : [0, ∞) → R and g : R → R be defined by \[f\left( x \right) = \sqrt{x}\] and g(x) = x. Find f + gf − gfg and \[\frac{f}{g}\] .

 
 

Let f(x) = x2 and g(x) = 2x+ 1 be two real functions. Find (g) (x), (f − g) (x), (fg) (x) and  \[\left( \frac{f}{g} \right) \left( x \right)\] .

 

Write the range of the real function f(x) = |x|.

 

Let  \[f\left( x \right) = \frac{\alpha x}{x + 1}, x \neq - 1\] . Then write the value of α satisfying f(f(x)) = x for all x ≠ −1.

 

 


If  \[e^{f\left( x \right)} = \frac{10 + x}{10 - x}\] , x ∈ (−10, 10) and \[f\left( x \right) = kf\left( \frac{200 x}{100 + x^2} \right)\] , then k =

 

The domain of definition of the function  \[f\left( x \right) = \sqrt{x - 1} + \sqrt{3 - x}\] is

 

The range of the function \[f\left( x \right) = \frac{x + 2}{\left| x + 2 \right|}\],x ≠ −2 is

 

The range of the function f(x) = |x − 1| is


Find x, if g(x) = 0 where g(x) = `(5x - 6)/7`


Find x, if g(x) = 0 where g(x) = `(18 -2x^2)/7`


Find the domain and range of the following function.

f(x) = `sqrt((x - 3)/(7 - x))`


Express the area A of a square as a function of its side s


Express the following exponential equation in logarithmic form

`"e"^(1/2)` = 1.6487


Write the following expression as a single logarithm.

`1/3 log (x - 1) + 1/2 log (x)`


Select the correct answer from given alternatives.

Let the function f be defined by f(x) = `(2x + 1)/(1 - 3x)` then f–1 (x) is ______.


Select the correct answer from given alternatives

The domain of `1/([x] - x)` where [x] is greatest integer function is


Select the correct answer from given alternative.

The domain and range of f(x) = 2 − |x − 5| is


Answer the following:

Find whether the following function is one-one

f : R → R defined by f(x) = x2 + 5


Answer the following:

Without using log tables, prove that `2/5 < log_10 3 < 1/2`


Answer the following:

If a2 = b3 = c4 = d5, show that loga bcd = `47/30`


Answer the following:

Find the domain of the following function.

f(x) = x!


Answer the following:

Find the range of the following function.

f(x) = |x – 5|


Answer the following:

Find (f ° g) (x) and (g ° f) (x)

f(x) = `x/(x + 1)`, g(x) = `x/(1 - x)`


The data in the adjacent table depicts the length of a person's forehand and their corresponding height. Based on this data, a student finds a relationship between the height (y) and the forehand length (x) as y = ax + b, where a, b are constant.

Length ‘x’ of
forehand (in cm)
Height 'y' 
(in inches)
35 56
45 65
50 69.5
55 74

Find the height of a person whose forehand length is 40 cm


The data in the adjacent table depicts the length of a person's forehand and their corresponding height. Based on this data, a student finds a relationship between the height (y) and the forehand length (x) as y = ax + b, where a, b are constant.

Length ‘x’ of
forehand (in cm)
Height 'y' 
(in inches)
35 56
45 65
50 69.5
55 74

Find the length of forehand of a person if the height is 53.3 inches


If f(x) = `{{:(x^2",", x ≥ 0),(x^3",", x < 0):}`, then f(x) is ______.


Find the range of the following functions given by `sqrt(16 - x^2)`


The domain for which the functions defined by f(x) = 3x2 – 1 and g(x) = 3 + x are equal is ______.


The domain of the function f(x) = `sin^-1((|x| + 5)/(x^2 + 1))` is (–∞, –a] ≈ [a, ∞). Then a is equal to ______.


If f: R `rightarrow` R be a function defined by f(x) = 4x3 – 7. Then ______.


If f : R – {2} `rightarrow` R i s a function defined by f(x) = `(x^2 - 4)/(x - 2)`, then its range is ______.


The period of the function

f(x) = `(sin 8x cos x - sin 6x cos 3x)/(cos 2x cos x - sin 3x sin 4x)` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×