Advertisements
Advertisements
प्रश्न
Find x, if g(x) = 0 where g(x) = `(18 -2x^2)/7`
उत्तर
g(x) = `(18 -2x^2)/7`
g(x) = 0
∴ `(18 -2x^2)/7` = 0
∴ 18 – 2x2 = 0
∴ x2 = `18/2` = 9
∴ x = ±3
APPEARS IN
संबंधित प्रश्न
Let f : R+ → R, where R+ is the set of all positive real numbers, such that f(x) = loge x. Determine
(c) whether f(xy) = f(x) : f(y) holds
Let f : R → R and g : C → C be two functions defined as f(x) = x2 and g(x) = x2. Are they equal functions?
If f : R → R be defined by f(x) = x2 + 1, then find f−1 [17] and f−1 [−3].
Let A = [p, q, r, s] and B = [1, 2, 3]. Which of the following relations from A to B is not a function?
If \[f\left( x \right) = \frac{2x}{1 + x^2}\] , show that f(tan θ) = sin 2θ.
If f(x) = 4x − x2, x ∈ R, then write the value of f(a + 1) −f(a − 1).
If f(x) = cos (log x), then the value of f(x) f(y) −\[\frac{1}{2}\left\{ f\left( \frac{x}{y} \right) + f\left( xy \right) \right\}\] is
The range of the function \[f\left( x \right) = \frac{x^2 - x}{x^2 + 2x}\] is
If f(x) = sin [π2] x + sin [−π]2 x, where [x] denotes the greatest integer less than or equal to x, then
The domain of the function \[f\left( x \right) = \sqrt{\frac{\left( x + 1 \right) \left( x - 3 \right)}{x - 2}}\] is
The domain of definition of the function \[f\left( x \right) = \sqrt{\frac{x - 2}{x + 2}} + \sqrt{\frac{1 - x}{1 + x}}\] is
A function f is defined as follows: f(x) = 5 − x for 0 ≤ x ≤ 4. Find the value of x such that f(x) = 3
Find x, if g(x) = 0 where g(x) = x3 − 2x2 − 5x + 6
Find the domain and range of the following function.
g(x) = `(x + 4)/(x - 2)`
Express the following exponential equation in logarithmic form
231 = 23
Express the following exponential equation in logarithmic form
e2 = 7.3890
Find the domain of f(x) = ln (x − 5)
Write the following expression as sum or difference of logarithm
`log ("pq"/"rs")`
Write the following expression as a single logarithm.
`1/3 log (x - 1) + 1/2 log (x)`
Prove that alogcb = blogca
Answer the following:
Identify the following relation is the function? If it is a function determine its domain and range.
{(2, 1), (4, 2), (6, 3), (8, 4), (10, 5), (12, 6), (14, 7)}
Answer the following:
If `log (("a" + "b")/2) = 1/2(log"a" + log"b")`, then show that a = b
A graph representing the function f(x) is given in it is clear that f(9) = 2
For what value of x is f(x) = 1?
A graph representing the function f(x) is given in it is clear that f(9) = 2
Describe the following Range
A function f is defined by f(x) = 2x – 3 find x such that f(x) = x
A function f is defined by f(x) = 2x – 3 find x such that f(x) = f(1 – x)
The range of 7, 11, 16, 27, 31, 33, 42, 49 is ______.
If f(x) = 5x - 3, then f-1(x) is ______
Domain of function f(x) = cos–1 6x is ______.
Redefine the function f(x) = x − 2 + 2 + x , – 3 ≤ x ≤ 3
Let f(x) = `sqrt(x)` and g(x) = x be two functions defined in the domain R+ ∪ {0}. Find (fg)(x)
Let f(x) = `sqrt(x)` and g(x) = x be two functions defined in the domain R+ ∪ {0}. Find `(f/g)(x)`
Let f(x) = `sqrt(1 + x^2)`, then ______.
The domain for which the functions defined by f(x) = 3x2 – 1 and g(x) = 3 + x are equal is ______.
The value of the function f(x) = `(x^2 - 3x + 2)/(x^2 + x - 6)` lies in the interval
The domain of the function f(x) = `sin^-1((|x| + 5)/(x^2 + 1))` is (–∞, –a] ≈ [a, ∞). Then a is equal to ______.
The function f: R `rightarrow` R defined by f(x) = sin x is ______.