मराठी

बिंदुओं (7, –6) और (3, 4) को मिलाने वाले रेखाखंड को आंतरिक रूप से 1 : 2 के अनुपात में विभाजित करने वाला बिंदु निम्नलिखित में स्थित होता ______ है। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

बिंदुओं (7, –6) और (3, 4) को मिलाने वाले रेखाखंड को आंतरिक रूप से 1 : 2 के अनुपात में विभाजित करने वाला बिंदु निम्नलिखित में स्थित होता ______ है।

पर्याय

  • चतुर्थांश I

  • चतुर्थांश II

  • चतुर्थांश III

  • चतुर्थांश IV

MCQ
रिकाम्या जागा भरा

उत्तर

बिंदुओं (7, –6) और (3, 4) को मिलाने वाले रेखाखंड को आंतरिक रूप से 1 : 2 के अनुपात में विभाजित करने वाला बिंदु निम्नलिखित में स्थित होता चतुर्थांश IV है।

स्पष्टीकरण:

यदि P(x, y), A(x1, y2) और B(x2, y2) को मिलाने वाले रेखा खंड को आंतरिक रूप से m : n के अनुपात में विभाजित करता है,

फिर x = `(mx_2 + nx_1)/(m + n)` और y = `(my_2 + ny_1)/(m + n)`

दिया गया है,

x1 = 7, y1 = – 6,

x2 = 3, y2 = 4,

m = 1 और n = 2

∴ x = `(1(3) + 2(7))/(1 + 2)`, y = `(1(4) + 2(-6))/(1 + 2)`   ...[विभाजन सूत्र द्वारा]

⇒ x = `(3 + 14)/3`, y = `(4 - 12)/3`

⇒ x = `17/3`, y = `-8/3`

तो, (x, y) = `(17/3, -8/3)` IV चतुर्र्थाश में स्थित है। ...[चूँकि, चतुर्थांश में, x-निर्देशांक धनात्मक है और y-निर्देशांक ऋणात्मक है]

shaalaa.com
विभाजन सूत्र
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: निर्देशांक ज्यामिति - प्रश्नावली 7.1 [पृष्ठ ८१]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 10
पाठ 7 निर्देशांक ज्यामिति
प्रश्नावली 7.1 | Q 9. | पृष्ठ ८१

संबंधित प्रश्‍न

बिंदु A(8, 9) और B(1, 2) को जोड़ने वाले रेखाखंड AB को बिंदु P(k, 7) किस अनुपात में विभाजित करता है ज्ञात कीजिए और k का मान बताइए।


बिंदु A (2, 7) और B(-4, -8) को जोड़ने वाले रेखाखंड AB के त्रिभाजक बिंदुओं के निर्देशांक ज्ञात कीजिए। 


A(20, 10), B(0, 20) को जोड़ने वाले रेखाखंड AB को पांच सर्वांगसम रेखाखंडों में विभाजित करने वाले बिंदुओं के निर्देशांक ज्ञात कीजिए।


यदि बिंदु A(4, -3) और B(8, 5) हो तो रेखाखंड AB को 3ः1 के अनुपात में विभाजित करने वाले बिंदु के निर्देशांक ज्ञात कीजिए।


बिंदुओ (−2, 4, 7) और (3, –5, 8) को मिलाने वाली रेखा खंड, YZ-तल द्वारा जिस अनुपात में विभक्त होता है, उसे ज्ञात कीजिए।


P(4, 2, –6) और Q(10, –16, 6) के मिलाने वाली रेखा खंड PQ को सम त्रि-भाजित करने वाले बिंदुओं के निर्देशांक ज्ञात कीजिए।


यदि A और B क्रमशः (-2, -2) और (2, -4) हो तो बिंदु P के निर्देशांक ज्ञात कीजिए ताकि AP = `3/7` AB हो और P रेखाखंड AB पर स्थित हो।


बिंदु A के निर्देशांक ज्ञात कीजिए, जहाँ AB एक वृत्त का व्यास है जिसका केंद्र (2, -3) है तथा B के निर्देशांक (1, 4) हैं।


वह अनुपात ज्ञात कीजिए, जिसमें रेखा 2x + 3y – 5 = 0, बिंदुओं (8, –9) और (2, 1) को मिलाने वाले रेखाखंड को विभाजित करती है। विभाजन बिंदु के निर्देशांक भी ज्ञात कीजिए।


यदि बिंदु A(4, –3) तथा B(8, 5) हो, तो रेखाखंड AB को 3 : 1 के अनुपात में विभाजित करने वाले बिंदु P का निर्देशांक ज्ञात करने के लिए निम्न कृति पूर्ण करो:

कृति:

x = `(mx_2 + nx_1)/square`

∴ x = `(3 xx 8 + 1 xx 4)/(3 + 1)`

∴ x = `(square + 4)/4`

∴ x = `square`,

y = `square/(m + n)`

∴ y = `(3 xx 5 + 1 xx (-3))/(3 + 1)`

∴ y = `(square - 3)/4`

∴ y = `square`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×