Advertisements
Advertisements
प्रश्न
बिंदु (– 4, 0), (4, 0) और (0, 3) निम्नलिखित के शीर्ष ______ हैं।
पर्याय
समकोण त्रिभुज
समद्विबाहु त्रिभुज
समबाहु त्रिभुज
विषमबाहु त्रिभुज
उत्तर
बिंदु (– 4,0), (4, 0) और (0, 3) निम्नलिखित के शीर्ष समद्विबाहु त्रिभुज हैं।
स्पष्टीकरण:
मान लीजिए A(– 4, 0), B(4, 0), C(0, 3) दिए गए शीर्ष हैं।
अब, A(– 4, 0) और B(4, 0) के बीच की दूरी,
AB = `sqrt((x_2 - x_1)^2 + (y_2 - y_1)^2`
AB = `sqrt([4 - (-4)]^2 + (0 - 0)^2`
= `sqrt((4 + 4)^2)`
= `sqrt(8^2)`
= 8
B(4, 0) और C(0, 3) के बीच की दूरी,
BC = `sqrt((0 - 4)^2 + (3 - 0)^2`
= `sqrt(16 + 9)`
= `sqrt(25)`
= 5
A(– 4, 0) और C(0, 3) के बीच की दूरी,
AC = `sqrt([0 - (-4)]^2 + (3 - 0)^2`
= `sqrt(16 + 9)`
= `sqrt(25)`
= 5
∵ BC = AC
अतः, ΔABC एक समद्विबाहु त्रिभुज है क्योंकि एक समद्विबाहु त्रिभुज की दो भुजाएँ बराबर होती हैं।
APPEARS IN
संबंधित प्रश्न
यदि बिंदु L(x, 7) और M(1, 15) के बीच की दूरी 10 हो, तो x का मान ज्ञात कीजिए।
नीचे दिए गए बिंदु एकरेखीय हैं या नहीं? इसकी जाँच कीजिए।
P(-2, 3), Q(1, 2), R(4, 1)
किसी कक्षा में, चार मित्र बिंदुओं A, B, C और D पर बैठे हुए हैं, जैसाकि आकृति में दर्शाया गया है। चंपा और चमेली कक्षा के अंदर आती हैं और कुछ मिनट तक देखने के बाद, चंपा चमेली से पूछती है, 'क्या तुम नहीं सोचती हो कि ABCD एक वर्ग है?' चमेली इससे सहमत नहीं है। दूरी सूत्र का प्रयोग करके, बताइए कि इनमें कौन सही है?
x-अक्ष पर वह बिंदु ज्ञात कीजिए जो (2, -5) और (-2, 9) से समदूरस्थ हैं।
किसी वर्ग के दो सम्मुख शीर्ष (-1, 2) और (3, 2) हैं। वर्ग के अन्य दोनों शीर्ष ज्ञात कीजिए।
बिंदुओं A(–2, –5) और B(2, 5) को मिलाने वाले रेखाखंड के लंब समद्विभाजक पर स्थित एक बिंदु ______ है।
यदि बिंदु P(2, 1), बिंदुओं A(4, 2) और B(8, 4) को मिलाने वाले रेखाखंड पर स्थित तो ______ है।
शीर्षों A(– 2, 0), B(2, 0) और C(0, 2) वाला त्रिभुज ABC शीर्षों D(–4, 0), E(4, 0) और F(0, 4) वाले त्रिभुज DEF के समरूप है।
बिंदु A(4, 3), B(6, 4), C(5, –6) और D(–3, 5) एक समांतर चतुर्भुज के शीर्ष हैं।
a का मान ज्ञात कीजिए, यदि बिंदुओं A(–3, –14) और B(a, –5) के बीच की दूरी 9 इकाई है।