Advertisements
Advertisements
प्रश्न
Calculate the median from the following data:
Marks below: | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 |
No. of students: | 15 | 35 | 60 | 84 | 96 | 127 | 198 | 250 |
उत्तर
Marks below | No of students | Class interval |
Frequency | Cumulative frequency |
10 | 15 | 0 - 10 | 15 | 15 |
20 | 35 | 10 - 20 | 20 | 35 |
30 | 60 | 20 - 30 | 25 | 60 |
40 | 84 | 30 - 40 | 24 | 84 |
50 | 96 | 40 - 50 | 12 | 96 |
60 | 127 | 50 - 60 | 37 | 127 |
70 | 198 | 60 - 70 | 71 | 198 |
80 | 250 | 70 - 80 | 52 | 250 |
N = 250 |
Here, N = 250
So, N/2 = 125
Thus, the cumulative frequency just greater than 125 is 127 and the corresponding class is 50 - 60.
Therefore, 50 - 60 is the median class.
Here, l = 50, f = 31, F = 96 and h = 10
We know that
Median `=l+{(N/2-F)/f}xxh`
`=50+{(125-96)/31}xx10`
`=50+(29xx10)/31`
`=50+290/31`
= 50 + 9.35
= 59.35
Hence, the median is 59.35.
APPEARS IN
संबंधित प्रश्न
The marks obtained by 30 students in a class assignment of 5 marks are given below.
Marks | 0 | 1 | 2 | 3 | 4 | 5 |
No. of Students |
1 | 3 | 6 | 10 | 5 | 5 |
Calculate the mean, median and mode of the above distribution
The following table gives the frequency distribution of married women by age at marriage:
Age (in years) | Frequency |
15-19 | 53 |
20-24 | 140 |
25-29 | 98 |
30-34 | 32 |
35-39 | 12 |
40-44 | 9 |
45-49 | 5 |
50-54 | 3 |
55-59 | 3 |
60 and above | 2 |
Calculate the median and interpret the results.
The following table shows the daily wages of workers in a factory:
Daily wages in (Rs) | 0 – 100 | 100 – 200 | 200 – 300 | 300 – 400 | 400 – 500 |
Number of workers | 40 | 32 | 48 | 22 | 8 |
Find the median daily wage income of the workers.
Calculate the median from the following frequency distribution table:
Class | 5 – 10 | 10 – 15 | 15 – 20 | 20 – 25 | 25 – 30 | 30 – 35 | 35 – 40 | 40 – 45 |
Frequency | 5 | 6 | 15 | 10 | 5 | 4 | 2 | 2 |
Calculate the median from the following data:
Height(in cm) | 135 - 140 | 140 - 145 | 145 - 150 | 150 - 155 | 155 - 160 | 160 - 165 | 165 - 170 | 170 - 175 |
Frequency | 6 | 10 | 18 | 22 | 20 | 15 | 6 | 3 |
Which measure of central tendency can be determine graphically?
Write the median class of the following distribution:
Class-interval: | 0−10 | 10−20 | 20−30 | 30−40 | 40−50 | 50−60 | 60−70 |
Frequency: | 4 | 4 | 8 | 10 | 12 | 8 | 4 |
Find the median of the following frequency distribution:
x | 10 | 11 | 12 | 13 | 14 | 15 |
f | 1 | 4 | 7 | 5 | 9 | 3 |
The following are the marks scored by the students in the Summative Assessment exam
Class | 0 − 10 | 10 − 20 | 20 − 30 | 30 − 40 | 40 − 50 | 50 − 60 |
No. of Students | 2 | 7 | 15 | 10 | 11 | 5 |
Calculate the median.
The monthly expenditure on milk in 200 families of a Housing Society is given below:
Monthly Expenditure (in ₹) |
1000 – 1500 | 1500 – 2000 | 2000 – 2500 | 2500 – 3000 | 3000 – 3500 | 3500 – 4000 | 4000 – 4500 | 4500 – 5000 |
Number of families | 24 | 40 | 33 | x | 30 | 22 | 16 | 7 |
Find the value of x and also, find the median and mean expenditure on milk.