рдорд░рд╛рдареА

Calculate the Median from the Following Data: Height(In Cm) 135 - 140 140 - 145 145 - 150 150 - 155 155 - 160 160 - 165 165 - 170 170 - 175 Frequency 6 10 18 22 20 15 6 3 - Mathematics

Advertisements
Advertisements

рдкреНрд░рд╢реНрди

Calculate the median from the following data:

Height(in cm) 135 - 140 140 - 145 145 - 150 150 - 155 155 - 160 160 - 165 165 - 170 170 - 175
Frequency 6 10 18 22 20 15 6 3

 

рдЙрддреНрддрд░

Class Frequency (f) Cumulative Frequency (cf)
135 – 140 6 6
140 – 145 10 16
145 – 150 18 34
150 – 155 22 56
155 – 160 20 76
160 – 165 15 91
165 – 170 6 97
170 – 175 3 100
  N = ΣЁЭСУ = 100  

Now, N = 100
`⇒ N/2` = 50.
The cumulative frequency just greater than 50 is 56 and the corresponding class is 150 - 155.
Thus, the median class is 150 – 155.
∴ l = 150, h = 5, f = 22, cf = c.f. of preceding class = 34 and `N/2` = 50.
Now,
Median, `M = l + {h×((N/2−cf)/f)}`
                   `= 150 + {5 × ((50 − 34)/22)}`
                    = 150 + 3.64
                    = 153.64
Hence, the median = 153.64.

shaalaa.com
  рдпрд╛ рдкреНрд░рд╢реНрдирд╛рдд рдХрд┐рдВрд╡рд╛ рдЙрддреНрддрд░рд╛рдд рдХрд╛рд╣реА рддреНрд░реБрдЯреА рдЖрд╣реЗ рдХрд╛?
рдкрд╛рда 9: Mean, Median, Mode of Grouped Data, Cumulative Frequency Graph and Ogive - Exercises 2

APPEARS IN

рдЖрд░ рдПрд╕ рдЕрдЧреНрд░рд╡рд╛рд▓ Mathematics [English] Class 10
рдкрд╛рда 9 Mean, Median, Mode of Grouped Data, Cumulative Frequency Graph and Ogive
Exercises 2 | Q 6

рд╡реНрд╣рд┐рдбрд┐рдУ рдЯреНрдпреВрдЯреЛрд░рд┐рдпрд▓VIEW ALL [4]

рд╕рдВрдмрдВрдзрд┐рдд рдкреНрд░рд╢реНтАНрди

A life insurance agent found the following data for distribution of ages of 100 policy holders. Calculate the median age, if policies are given only to persons having age 18 years onwards but less than 60 years.

Age (in years) Number of policy holders
Below 20 2
20 - 25 4
25 - 30 18
30 - 35 21
35 - 40 33
40 - 45 11
45 - 50 3
50 - 55 6
55 - 60 2

The following is the distribution of height of students of a certain class in a certain city:

Height (in cm): 160 - 162 163 - 165 166 - 168 169 - 171 172 - 174
No. of students: 15 118 142 127 18

Find the median height.


Calculate the missing frequency from the following distribution, it being given that the median of the distribution is 24.

Age in years 0 - 10 10 - 20 20 - 30 30 - 40 40 - 50
No. of persons 5 25 ? 18 7

Compute the median for the following data:

Marks No. of students
Less than 10 0
Less than 30 10
Less than 50 25
Less than 70 43
Less than 90 65
Less than 110 87
Less than 130 96
Less than 150 100

Below is the given frequency distribution of words in an essay:

Number of words   Number of Candidates
600  -  800             12
800  -  1000             14
1000 - 1200              40
1200 - 1400              15
1400 - 1600              19

Find the mean number of words written.


Mode and mean of a data are 12k and 15A. Median of the data is ______.


The maximum speeds, in km per hour, of 35 cars in a race are given as follows:

Speed (km/h) 85 – 100 100 – 115 115 – 130 130 – 145
Number of cars 5 8 13 9

Calculate the median speed.


The median of the following data is 525. Find the values of x and y, if the total frequency is 100.

Class interval Frequency
0 – 100 2
100 – 200 5
200 – 300 x
300 – 400 12
400 – 500 17
500 – 600 20
600 – 700 y
700 – 800 9
800 – 900 7
900 – 1000 4

Heights of 50 students of class X of a school are recorded and following data is obtained:

Height (in cm) 130 – 135 135 – 140 140 – 145 145 – 150 150 – 155 155 – 160
Number of students 4 11 12 7 10 6

Find the median height of the students.


Find the median of the following distribution:

Marks 0 – 10 10 –20 20  – 30 30 – 40 40 – 50 50 – 60
Number of students 5 8 20 15 7 5

Share
Notifications

Englishрд╣рд┐рдВрджреАрдорд░рд╛рдареА


      Forgot password?
Use app×