рд╣рд┐рдВрджреА

Calculate the Median from the Following Data: Height(In Cm) 135 - 140 140 - 145 145 - 150 150 - 155 155 - 160 160 - 165 165 - 170 170 - 175 Frequency 6 10 18 22 20 15 6 3 - Mathematics

Advertisements
Advertisements

рдкреНрд░рд╢реНрди

Calculate the median from the following data:

Height(in cm) 135 - 140 140 - 145 145 - 150 150 - 155 155 - 160 160 - 165 165 - 170 170 - 175
Frequency 6 10 18 22 20 15 6 3

 

рдЙрддреНрддрд░

Class Frequency (f) Cumulative Frequency (cf)
135 – 140 6 6
140 – 145 10 16
145 – 150 18 34
150 – 155 22 56
155 – 160 20 76
160 – 165 15 91
165 – 170 6 97
170 – 175 3 100
  N = ΣЁЭСУ = 100  

Now, N = 100
`⇒ N/2` = 50.
The cumulative frequency just greater than 50 is 56 and the corresponding class is 150 - 155.
Thus, the median class is 150 – 155.
∴ l = 150, h = 5, f = 22, cf = c.f. of preceding class = 34 and `N/2` = 50.
Now,
Median, `M = l + {h×((N/2−cf)/f)}`
                   `= 150 + {5 × ((50 − 34)/22)}`
                    = 150 + 3.64
                    = 153.64
Hence, the median = 153.64.

shaalaa.com
  рдХреНрдпрд╛ рдЗрд╕ рдкреНрд░рд╢реНрди рдпрд╛ рдЙрддреНрддрд░ рдореЗрдВ рдХреЛрдИ рддреНрд░реБрдЯрд┐ рд╣реИ?
рдЕрдзреНрдпрд╛рдп 9: Mean, Median, Mode of Grouped Data, Cumulative Frequency Graph and Ogive - Exercises 2

APPEARS IN

рдЖрд░рдПрд╕ рдЕрдЧреНрд░рд╡рд╛рд▓ Mathematics [English] Class 10
рдЕрдзреНрдпрд╛рдп 9 Mean, Median, Mode of Grouped Data, Cumulative Frequency Graph and Ogive
Exercises 2 | Q 6

рд╡реАрдбрд┐рдпреЛ рдЯреНрдпреВрдЯреЛрд░рд┐рдпрд▓VIEW ALL [4]

рд╕рдВрдмрдВрдзрд┐рдд рдкреНрд░рд╢реНрди

For a certain frequency distribution, the values of Assumed mean (A) = 1300, `sumf_id_i` = 900 and `sumfi` = 100. Find the value of mean (`barx`) .

 


The following is the distribution of height of students of a certain class in a certain city:

Height (in cm): 160 - 162 163 - 165 166 - 168 169 - 171 172 - 174
No. of students: 15 118 142 127 18

Find the median height.


Find the missing frequencies and the median for the following distribution if the mean is 1.46.

No. of accidents: 0 1 2 3 4 5 Total
Frequency (No. of days): 46 ? ? 25 10 5 200

If the median of the data: 24, 25, 26, x + 2, x + 3, 30, 31, 34 is 27.5, then x =


If the difference of Mode and Median of a data is 24, then the difference of median and mean is ______.


The abscissa of the point of intersection of less than type and of the more than types cumulative frequency curves of a grouped data gives its ______.


Below is the given frequency distribution of words in an essay:

Number of words   Number of Candidates
600  -  800             12
800  -  1000             14
1000 - 1200              40
1200 - 1400              15
1400 - 1600              19

Find the mean number of words written.


Calculate the median of the following distribution:

Weight (in nearest kg.) No. of students
46 7
48 5
50 8
52 12
53 10
54 2
55 1

Pocket expenses of a class in a college are shown in the following frequency distribution:

Pocket expenses

0 - 200

200 - 400

400 - 600

600 - 800

800 - 1000

1000 - 1200

1200 - 1400

Number of students 33 74 170 88 76 44 25

Then the median for the above data is?


If in a frequency distribution, the mean and median are 21 and 22 respectively, then its mode is approximately ______.


Share
Notifications

Englishрд╣рд┐рдВрджреАрдорд░рд╛рдареА


      Forgot password?
Use app×