Advertisements
Advertisements
प्रश्न
Calculate the median of the following distribution:
Weight (in nearest kg.) | No. of students |
46 | 7 |
48 | 5 |
50 | 8 |
52 | 12 |
53 | 10 |
54 | 2 |
55 | 1 |
उत्तर
The given variates (weights of students) are already in ascending order. We construct the cumulative frequency table as under:
Variable (weight) |
Frequency (No.of Students) |
Cumulative frequency |
46 | 7 | 7 |
48 | 5 | 12 |
50 | 8 | 20 |
52 | 12 | 32 |
53 | 10 | 42 |
54 | 2 | 44 |
55 | 1 | 45 |
Here, n = 45, which is odd.
∴ Median = `("n" + 1)/(2)`th observation
= 23rd observation = 52.
(∵ All observation from 21st to 32nd are equal, each = 52).
APPEARS IN
संबंधित प्रश्न
Below is the given frequency distribution of words in an essay
Number of Words | Number of Candidates |
600 – 800 | 8 |
800 – 1000 | 22 |
1000 – 1200 | 40 |
1200 – 1400 | 18 |
1400 - 1600 | 12 |
Find the mean number of words written.
Following are the lives in hours of 15 pieces of the components of aircraft engine. Find the median:
715, 724, 725, 710, 729, 745, 694, 699, 696, 712, 734, 728, 716, 705, 719.
Following is the distribution of I.Q. of loo students. Find the median I.Q.
I.Q.: | 55 - 64 | 65 - 74 | 75 - 84 | 85 - 94 | 95 - 104 | 105 - 114 | 115 - 124 | 125 - 134 | 135 - 144 |
No of Students: | 1 | 2 | 9 | 22 | 33 | 22 | 8 | 2 | 1 |
From the following data, find:
Median
25, 10, 40, 88, 45, 60, 77, 36, 18, 95, 56, 65, 7, 0, 38 and 83
From the following data, find:
Inter-quartile range
25, 10, 40, 88, 45, 60, 77, 36, 18, 95, 56, 65, 7, 0, 38 and 83
Which measure of central tendency can be determine graphically?
For the following distribution
Marks | 0 - 10 | 10 - 20 | 20 - 30 | 30 - 40 | 40 - 50 |
No. of Students | 3 | 9 | 13 | 10 | 5 |
the number of students who got marks less than 30 is?
Calculate the median of marks of students for the following distribution:
Marks | Number of students |
More than or equal to 0 | 100 |
More than or equal to 10 | 93 |
More than or equal to 20 | 88 |
More than or equal to 30 | 70 |
More than or equal to 40 | 59 |
More than or equal to 50 | 42 |
More than or equal to 60 | 34 |
More than or equal to 70 | 20 |
More than or equal to 80 | 11 |
More than or equal to 90 | 4 |
The median of the following frequency distribution is 35. Find the value of x.
Class: | 0 – 10 | 10 – 20 | 20 – 30 | 30 – 40 | 40 – 50 |
Frequency: | 6 | 3 | x | 12 | 19 |
The following table shows classification of number of workers and number of hours they work in software company. Prepare less than upper limit type cumulative frequency distribution table:
Number of hours daily | Number of workers |
8 - 10 | 150 |
10 - 12 | 500 |
12 - 14 | 300 |
14 - 16 | 50 |