Advertisements
Advertisements
प्रश्न
Obtain the median for the following frequency distribution:
x : | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
f : | 8 | 10 | 11 | 16 | 20 | 25 | 15 | 9 | 6 |
उत्तर
Calculation of Median
x | f | c.f. |
1 | 8 | 8 |
2 | 10 | 18 |
3 | 11 | 29 |
4 | 16 | 45 |
5 | 20 | 65 |
6 | 25 | 90 |
7 | 15 | 105 |
8 | 9 | 114 |
9 | 6 | 120 |
N = 120 |
Here, N = 120, so, `"N"/(2)` = 60.
The cumulative frequency just greater than `"N"/(2)` i.e., 60 is 65. The value of the variate corresponding to 65 is 5.
Hence, median = 5.
APPEARS IN
संबंधित प्रश्न
For a certain frequency distribution, the value of Mean is 101 and Median is 100. Find the value of Mode.
For a certain frequency distribution, the value of mean is 20 and mode is 11. Find the value of median.
The lengths of 40 leaves of a plant are measured correct to the nearest millimeter, and the data obtained is represented in the following table:
Length (in mm) | Number of leaves |
118 − 126 | 3 |
127 – 135 | 5 |
136 − 144 | 9 |
145 – 153 | 12 |
154 – 162 | 5 |
163 – 171 | 4 |
172 – 180 | 2 |
Find the median length of the leaves.
(Hint: The data needs to be converted to continuous classes for finding the median, since the formula assumes continuous classes. The classes then change to 117.5 − 126.5, 126.5 − 135.5… 171.5 − 180.5)
An incomplete distribution is given as follows:
Variable: | 0 - 10 | 10 - 20 | 20 - 30 | 30 - 40 | 40 - 50 | 50 - 60 | 60 - 70 |
Frequency: | 10 | 20 | ? | 40 | ? | 25 | 15 |
You are given that the median value is 35 and the sum of all the frequencies is 170. Using the median formula, fill up the missing frequencies.
The maximum speeds, in km per hour, of 35 cars in a race are given as follows:
Speed (km/h) | 85 – 100 | 100 – 115 | 115 – 130 | 130 – 145 |
Number of cars | 5 | 8 | 13 | 9 |
Calculate the median speed.
Yoga is an ancient practice which is a form of meditation and exercise. By practising yoga, we not even make our body healthy but also achieve inner peace and calmness. The International Yoga Day is celebrated on the 21st of June every year since 2015. |
Age Group | 15 – 25 | 25 – 35 | 35 – 45 | 45 –55 | 55 –65 | 65 –75 | 75 – 85 |
Number of People |
8 | 10 | 15 | 25 | 40 | 24 | 18 |
Based on the above, find the following:
- Find the median age of people enrolled for the camp.
- If x more people of the age group 65 – 75 had enrolled for the camp, the mean age would have been 58. Find the value of x.
If in a frequency distribution, the mean and median are 21 and 22 respectively, then its mode is approximately ______.
The empirical relation between the mode, median and mean of a distribution is ______.
The monthly expenditure on milk in 200 families of a Housing Society is given below:
Monthly Expenditure (in ₹) |
1000 – 1500 | 1500 – 2000 | 2000 – 2500 | 2500 – 3000 | 3000 – 3500 | 3500 – 4000 | 4000 – 4500 | 4500 – 5000 |
Number of families | 24 | 40 | 33 | x | 30 | 22 | 16 | 7 |
Find the value of x and also, find the median and mean expenditure on milk.
The median of first seven prime numbers is ______.