Advertisements
Advertisements
प्रश्न
The lengths of 40 leaves of a plant are measured correct to the nearest millimeter, and the data obtained is represented in the following table:
Length (in mm) | Number of leaves |
118 − 126 | 3 |
127 – 135 | 5 |
136 − 144 | 9 |
145 – 153 | 12 |
154 – 162 | 5 |
163 – 171 | 4 |
172 – 180 | 2 |
Find the median length of the leaves.
(Hint: The data needs to be converted to continuous classes for finding the median, since the formula assumes continuous classes. The classes then change to 117.5 − 126.5, 126.5 − 135.5… 171.5 − 180.5)
उत्तर
The given data does not have continuous class intervals. It can be observed that the difference between two class intervals is 1. Therefore, `1/2` = 0.5 has to be added and subtracted to upper class limits and lower class limits respectively.
Continuous class intervals with respective cumulative frequencies can be represented as follows.
Length (in mm) | Number or leaves fi | Cumulative frequency |
117.5 − 126.5 | 3 | 3 |
126.5 − 135.5 | 5 | 3 + 5 = 8 |
135.5 − 144.5 | 9 | 8 + 9 = 17 |
144.5 − 153.5 | 12 | 17 + 12 = 29 |
153.5 − 162.5 | 5 | 29 + 5 = 34 |
162.5 − 171.5 | 4 | 34 + 4 = 38 |
171.5 − 180.5 | 4 | 38 + 2 = 40 |
From the table, it can be observed that the cumulative frequency just greater than `N/2 (40/2 = 20)` is 29, belonging to the class interval 144.5 − 153.5.
Median class = 144.5 − 153.5
Lower limit (l) of median class = 144.5
Class size (h) = 9
Frequency (f) of median class = 12
Cumulative frequency (cf) of class preceding median class = 17
Median = `l + ((N/2 - F)/f) xx h`
= `144.5 + ((20-17)/12)xx9`
= `144.5+9/4=146.75`
Therefore, the median length of leaves is 146.75 mm.
APPEARS IN
संबंधित प्रश्न
For a certain frequency distribution, the values of Assumed mean (A) = 1300, `sumf_id_i` = 900 and `sumfi` = 100. Find the value of mean (`barx`) .
The marks obtained by 30 students in a class assignment of 5 marks are given below.
Marks | 0 | 1 | 2 | 3 | 4 | 5 |
No. of Students |
1 | 3 | 6 | 10 | 5 | 5 |
Calculate the mean, median and mode of the above distribution
The numbers 6, 8, 10, 12, 13 and x are arranged in an ascending order. If the mean of the observations is equal to the median, find the value of x
An incomplete distribution is given below:
Variable: | 10-20 | 20-30 | 30-40 | 40-50 | 50-60 | 60-70 | 70-80 |
Frequency: | 12 | 30 | - | 65 | - | 25 | 18 |
You are given that the median value is 46 and the total number of items is 230.
(i) Using the median formula fill up missing frequencies.
(ii) Calculate the AM of the completed distribution.
A survey regarding the height (in cm) of 51 girls of class X of a school was conducted and the following data was obtained:
Height in cm | Number of Girls |
Less than 140 | 4 |
Less than 145 | 11 |
Less than 150 | 29 |
Less than 155 | 40 |
Less than 160 | 46 |
Less than 165 | 51 |
Find the median height.
In a hospital, the ages of diabetic patients were recorded as follows. Find the median age.
Age (in years) |
0 – 15 | 15 – 30 | 30 – 45 | 45 – 60 | 60 - 75 |
No. of patients | 5 | 20 | 40 | 50 | 25 |
Given below is the number of units of electricity consumed in a week in a certain locality:
Class | 65 – 85 | 85 – 105 | 105 – 125 | 125 – 145 | 145 – 165 | 165 – 185 | 185 – 200 |
Frequency | 4 | 5 | 13 | 20 | 14 | 7 | 4 |
Calculate the median.
Find the median from the following data:
Class | 1 – 5 | 6 – 10 | 11 – 15 | 16 – 20 | 21 – 25 | 26 – 30 | 31 – 35 | 35 – 40 | 40 – 45 |
Frequency | 7 | 10 | 16 | 32 | 24 | 16 | 11 | 5 | 2 |
The following frequency distribution table gives the ages of 200 patients treated in a hospital in a week. Find the mode of ages of the patients.
Age (years) | Less than 5 | 5 - 9 | 10 - 14 | 15 - 19 | 20 - 24 | 25 - 29 |
No. of patients | 38 | 32 | 50 | 36 | 24 | 20 |
The following table shows the number of patients of different age groups admitted to a hospital for treatment on a day. Find the median of ages of the patients.
Age- group (Yrs.) | 10-20 | 20-30 | 30-40 | 40-50 | 50-60 | 60-70 |
No. of patients | 40 | 32 | 35 | 45 | 33 | 15 |
Find the median of:
66, 98, 54, 92, 87, 63, 72.
Find the median of the scores 7, 10, 5, 8, 9.
Calculate the median of the following distribution:
Weight (in nearest kg.) | No. of students |
46 | 7 |
48 | 5 |
50 | 8 |
52 | 12 |
53 | 10 |
54 | 2 |
55 | 1 |
Mode and mean of a data are 12k and 15A. Median of the data is ______.
Consider the following frequency distribution:
Class | 0 – 5 | 6 – 11 | 12 – 17 | 18 – 23 | 24 – 29 |
Frequency | 13 | 10 | 15 | 8 | 11 |
The upper limit of the median class is:
The maximum speeds, in km per hour, of 35 cars in a race are given as follows:
Speed (km/h) | 85 – 100 | 100 – 115 | 115 – 130 | 130 – 145 |
Number of cars | 5 | 8 | 13 | 9 |
Calculate the median speed.
Find the median of the following distribution:
Marks | 0 – 10 | 10 –20 | 20 – 30 | 30 – 40 | 40 – 50 | 50 – 60 |
Number of students | 5 | 8 | 20 | 15 | 7 | 5 |
Find the modal and median classes of the following distribution.
Class | 0 – 20 | 20 – 40 | 40 – 60 | 60 – 80 | 80 – 100 |
Frequency | 11 | 22 | 19 | 18 | 7 |
The median of first 10 natural numbers is ______.