Advertisements
Advertisements
प्रश्न
The following frequency distribution table gives the ages of 200 patients treated in a hospital in a week. Find the mode of ages of the patients.
Age (years) | Less than 5 | 5 - 9 | 10 - 14 | 15 - 19 | 20 - 24 | 25 - 29 |
No. of patients | 38 | 32 | 50 | 36 | 24 | 20 |
उत्तर
Class Age (years) |
Continuous class | Frequency (No. of patients) |
Less than 5 | 0 − 4.5 | 38 |
5 − 9 | 4.5 − 9.5 | 32 → f0 |
10 − 14 | 9.5 − 14.5 | 50 → f1 |
15 − 19 | 14.5 − 19.5 | 36 → f2 |
20 − 24 | 19.5 − 24.5 | 24 |
25 − 29 | 24.5 − 29.5 | 20 |
Here, the maximum frequency is 50.
The class corresponding to this frequency is 9.5 - 14.5.
So, the modal class is 9.5 - 14.5.
L = Lower class limit of the modal class = 9.5
h = Class interval of the modal class = 5
f1 = frequency of the modal class = 50
f0 = frequency of the class preceding the modal class = 32
f2 = frequency of the class succeeding the modal class = 36
∴ Mode = `"L" + ((f_1 − f_0)/(2 f_1 − f_0 − f_2)) × h`
= `9.5 + ((50 - 32)/(2(50) - 32 - 36)) × 5`
= `9.5 + ((18)/(100 - 68)) × 5`
= 9.5 + 0.5625 × 5
= 9.5 + 2.8125
∴ The mode of the ages of the patients is 12.31 years (approx.).
संबंधित प्रश्न
The lengths of 40 leaves of a plant are measured correct to the nearest millimeter, and the data obtained is represented in the following table:
Length (in mm) | Number of leaves |
118 − 126 | 3 |
127 – 135 | 5 |
136 − 144 | 9 |
145 – 153 | 12 |
154 – 162 | 5 |
163 – 171 | 4 |
172 – 180 | 2 |
Find the median length of the leaves.
(Hint: The data needs to be converted to continuous classes for finding the median, since the formula assumes continuous classes. The classes then change to 117.5 − 126.5, 126.5 − 135.5… 171.5 − 180.5)
The table below shows the salaries of 280 persons :
Salary (In thousand Rs) | No. of Persons |
5 – 10 | 49 |
10 – 15 | 133 |
15 – 20 | 63 |
20 – 25 | 15 |
25 – 30 | 6 |
30 – 35 | 7 |
35 – 40 | 4 |
40 – 45 | 2 |
45 – 50 | 1 |
Calculate the median salary of the data.
An incomplete distribution is given below:
Variable: | 10-20 | 20-30 | 30-40 | 40-50 | 50-60 | 60-70 | 70-80 |
Frequency: | 12 | 30 | - | 65 | - | 25 | 18 |
You are given that the median value is 46 and the total number of items is 230.
(i) Using the median formula fill up missing frequencies.
(ii) Calculate the AM of the completed distribution.
If the median of the following data is 32.5, find the missing frequencies.
Class interval: | 0 - 10 | 10 - 20 | 20 - 30 | 30 - 40 | 40 - 50 | 50 - 60 | 60 - 70 | Total |
Frequency: | f1 | 5 | 9 | 12 | f2 | 3 | 2 | 40 |
Compute the median for the following data:
Marks | No. of students |
Less than 10 | 0 |
Less than 30 | 10 |
Less than 50 | 25 |
Less than 70 | 43 |
Less than 90 | 65 |
Less than 110 | 87 |
Less than 130 | 96 |
Less than 150 | 100 |
Compute the median for the following data:
Marks | No. of students |
More than 150 | 0 |
More than 140 | 12 |
More than 130 | 27 |
More than 120 | 60 |
More than 110 | 105 |
More than 100 | 124 |
More than 90 | 141 |
More than 80 | 150 |
A student got the following marks in 9 questions of a question paper.
3, 5, 7, 3, 8, 0, 1, 4 and 6.
Find the median of these marks.
The marks obtained by 19 students of a class are given below:
27, 36, 22, 31, 25, 26, 33, 24, 37, 32, 29, 28, 36, 35, 27, 26, 32, 35 and 28.
Find:
- Median
- Lower quartile
- Upper quartile
- Inter-quartile range
Estimate the median for the given data by drawing an ogive:
Class | 0 – 10 | 10 – 20 | 20 – 30 | 30 – 40 | 40 – 50 |
Frequency | 4 | 9 | 15 | 14 | 8 |
Given below is the number of units of electricity consumed in a week in a certain locality:
Class | 65 – 85 | 85 – 105 | 105 – 125 | 125 – 145 | 145 – 165 | 165 – 185 | 185 – 200 |
Frequency | 4 | 5 | 13 | 20 | 14 | 7 | 4 |
Calculate the median.
Calculate the missing frequency from the following distribution, it being given that the median of distribution is 24.
Class | 0 – 10 | 10 – 20 | 20 – 30 | 30 – 40 | 40 - 50 |
Frequency | 5 | 25 | ? | 18 | 7 |
Find the median of:
66, 98, 54, 92, 87, 63, 72.
Below is the given frequency distribution of words in an essay:
Number of words | Number of Candidates |
600 - 800 | 12 |
800 - 1000 | 14 |
1000 - 1200 | 40 |
1200 - 1400 | 15 |
1400 - 1600 | 19 |
Find the mean number of words written.
Find the Median of the following distribution:
x | 3 | 5 | 10 | 12 | 8 | 15 |
f | 2 | 4 | 6 | 10 | 8 | 7 |
Obtain the median for the following frequency distribution:
x : | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
f : | 8 | 10 | 11 | 16 | 20 | 25 | 15 | 9 | 6 |
The maximum speeds, in km per hour, of 35 cars in a race are given as follows:
Speed (km/h) | 85 – 100 | 100 – 115 | 115 – 130 | 130 – 145 |
Number of cars | 5 | 8 | 13 | 9 |
Calculate the median speed.
The median of the following frequency distribution is 35. Find the value of x.
Class: | 0 – 10 | 10 – 20 | 20 – 30 | 30 – 40 | 40 – 50 |
Frequency: | 6 | 3 | x | 12 | 19 |
The median of 100 observations grouped in classes of equal width is 25. If the median class interval is 20 –30 and the number of observations less than 20 is 45, then the frequency of median class is ______.
The median of first 10 natural numbers is ______.