मराठी

An Incomplete Distribution is Given Below: Variable: 10-20 20-30 30-40 40-50 50-60 60-70 70-80 - Mathematics

Advertisements
Advertisements

प्रश्न

An incomplete distribution is given below:

Variable: 10-20 20-30 30-40 40-50 50-60 60-70 70-80
Frequency: 12 30 - 65 - 25 18

You are given that the median value is 46 and the total number of items is 230.

(i) Using the median formula fill up missing frequencies.

(ii) Calculate the AM of the completed distribution.

उत्तर

(i)

Class interval Frequency Cumulative
frequency
10-20 12 12
20-30 30 42
30-40 x 42 + x
40-50 65 107 + x
50-60 y 107 + x + y
60-70 25 132 + x + y
70-80 18 150 + x + y
  N = 230  

Given median = 46

Then, median class = 40 - 50

l = 40, h = 50 - 40 = 10, f = 65, F = 42 + x

Median `=l+((N/2)-F)/fxxh`

`rArr46=40+(115-(42+x))/65xx10`

`rArr46 - 40 = (115-42-x)/65xx10`

`rArr6=(73-x)/65=10`

`rArr(6xx65)/10=73-x`

`rArr390/10=73-x`

39 = 73 - x

x = 73 - 39

x = 34

Given N = 230

⇒ 12 + 30 + x + 65 + y + 25 + 18 = 230

⇒ 12 + 30 + 34 + 65 + y + 25 + 18 = 230

⇒ 184 + y = 230

⇒ y = 230 - 184

⇒ y = 46

 

(ii)

Class interval Mid value(x) Frequency(f) fx
10-20 15 12 180
20-30 25 30 750
30-40 35 34 1190
40-50 45 65 2925
50-60 55 46 2530
60-70 65 25 1625
70-80 75 18 1350
    N = 230 `sumfx=10550`

Mean `=(sumfx)/N`

`=10550/230=45.87`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 15: Statistics - Exercise 15.4 [पृष्ठ ३५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 15 Statistics
Exercise 15.4 | Q 11 | पृष्ठ ३५

व्हिडिओ ट्यूटोरियलVIEW ALL [4]

संबंधित प्रश्‍न

The numbers 6, 8, 10, 12, 13 and x are arranged in an ascending order. If the mean of the observations is equal to the median, find the value of x


An incomplete distribution is given as follows:

Variable: 0 - 10 10 - 20 20 - 30 30 - 40 40 - 50 50 - 60 60 - 70
Frequency: 10 20 ? 40 ? 25 15

You are given that the median value is 35 and the sum of all the frequencies is 170. Using the median formula, fill up the missing frequencies.


Compute the median for the following data:

Marks No. of students
More than 150 0
More than 140 12
More than 130 27
More than 120 60
More than 110 105
More than 100 124
More than 90 141
More than 80 150

The weight of 60 boys are given in the following distribution table:

Weight (kg) 37 38 39 40 41
No. of boys 10 14 18 12 6

Find:

  1. Median 
  2. Lower quartile 
  3. Upper quartile 
  4. Inter-quartile range  

Estimate the median for the given data by drawing an ogive: 

Class  0 – 10 10 – 20 20 – 30 30 – 40 40 – 50
 Frequency  4 9 15 14 8

Write the median class of the following distribution:

Class-interval: 0−10 10−20 20−30 30−40 40−50 50−60 60−70
Frequency: 4 4 8 10 12 8 4

Find a certain frequency distribution, the value of mean and mode are 54.6 and 54 respectively. Find the value of median.


Consider the data:

Class 65 – 85 85 – 105 105 – 125 125 – 145 145 – 165 165 – 185 185 – 205
Frequency 4 5 13 20 14 7 4

The difference of the upper limit of the median class and the lower limit of the modal class is:


The empirical relation between the mode, median and mean of a distribution is ______.


A life insurance agent found the following data for distribution of ages of 100 policy holders. Calculate the median age, if policies are given only to persons having age 18 years onwards but less than 60 year.

Age (in years) Number of policy holders
Below 20 2
Below 25 6
Below 30 24
Below 35 45
Below 40 78
Below 45 89
Below 50 92
Below 55 98
Below 60 100

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×