मराठी

The weight of 60 boys are given in the following distribution table: Weight (kg) 37 38 39 40 41 No. of boys 10 14 18 12 6 Find: Median Lower quartile Upper quartile Inter-quartile range - Mathematics

Advertisements
Advertisements

प्रश्न

The weight of 60 boys are given in the following distribution table:

Weight (kg) 37 38 39 40 41
No. of boys 10 14 18 12 6

Find:

  1. Median 
  2. Lower quartile 
  3. Upper quartile 
  4. Inter-quartile range  
बेरीज

उत्तर

Weight (kg)
x
No. of boys
f
Cumulative frequency 
37 10 10
38 14 24
39 18 42
40 12 54
41 6 60

Number of terms = 60 

i. Median = The mean of the 30th and 31st terms 

∴ Median = `(39 + 39)/2`

= `78/2`

= 39 

ii. Lower quartile (Q1) = `60^(th)/4` term

= 15th term

= 38 

iii. Upper quartile (Q3) = `(3 xx 60^(th))/4` term

= 45th term

= 40 

iv. Inter-quartile range = Q3 – Q1

= 40 – 38

= 2

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 24: Measure of Central Tendency(Mean, Median, Quartiles and Mode) - Exercise 24 (C) [पृष्ठ ३७२]

APPEARS IN

सेलिना Mathematics [English] Class 10 ICSE
पाठ 24 Measure of Central Tendency(Mean, Median, Quartiles and Mode)
Exercise 24 (C) | Q 6 | पृष्ठ ३७२

व्हिडिओ ट्यूटोरियलVIEW ALL [4]

संबंधित प्रश्‍न

An incomplete distribution is given as follows:

Variable: 0 - 10 10 - 20 20 - 30 30 - 40 40 - 50 50 - 60 60 - 70
Frequency: 10 20 ? 40 ? 25 15

You are given that the median value is 35 and the sum of all the frequencies is 170. Using the median formula, fill up the missing frequencies.


Compute the median for the following data:

Marks No. of students
Less than 10 0
Less than 30 10
Less than 50 25
Less than 70 43
Less than 90 65
Less than 110 87
Less than 130 96
Less than 150 100

Estimate the median for the given data by drawing an ogive: 

Class  0 – 10 10 – 20 20 – 30 30 – 40 40 – 50
 Frequency  4 9 15 14 8

Given below is the number of units of electricity consumed in a week in a certain locality:

Class 65 – 85 85 – 105 105 – 125 125 – 145 145 – 165 165 – 185 185 – 200
Frequency 4 5 13 20 14 7 4

Calculate the median.


Calculate the median from the following data:

Height(in cm) 135 - 140 140 - 145 145 - 150 150 - 155 155 - 160 160 - 165 165 - 170 170 - 175
Frequency 6 10 18 22 20 15 6 3

 


If the median of the following frequency distribution is 32.5, find the values of `f_1 and f_2`.

Class 0 – 10 10 – 20 20 – 30 30 -40 40 – 50 50 – 60 60 – 70 Total
Frequency `f_1`

 

5

9 12 `f_2` 3 2 40

 


The arithmetic mean and mode of a data are 24 and 12 respectively, then its median is


Pocket expenses of a class in a college are shown in the following frequency distribution:

Pocket expenses

0 - 200

200 - 400

400 - 600

600 - 800

800 - 1000

1000 - 1200

1200 - 1400

Number of students 33 74 170 88 76 44 25

Then the median for the above data is?


The median of the following data is 525. Find the values of x and y, if the total frequency is 100.

Class interval Frequency
0 – 100 2
100 – 200 5
200 – 300 x
300 – 400 12
400 – 500 17
500 – 600 20
600 – 700 y
700 – 800 9
800 – 900 7
900 – 1000 4

The median of first 10 natural numbers is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×