Advertisements
Advertisements
Question
The weight of 60 boys are given in the following distribution table:
Weight (kg) | 37 | 38 | 39 | 40 | 41 |
No. of boys | 10 | 14 | 18 | 12 | 6 |
Find:
- Median
- Lower quartile
- Upper quartile
- Inter-quartile range
Solution
Weight (kg) x |
No. of boys f |
Cumulative frequency |
37 | 10 | 10 |
38 | 14 | 24 |
39 | 18 | 42 |
40 | 12 | 54 |
41 | 6 | 60 |
Number of terms = 60
i. Median = The mean of the 30th and 31st terms
∴ Median = `(39 + 39)/2`
= `78/2`
= 39
ii. Lower quartile (Q1) = `60^(th)/4` term
= 15th term
= 38
iii. Upper quartile (Q3) = `(3 xx 60^(th))/4` term
= 45th term
= 40
iv. Inter-quartile range = Q3 – Q1
= 40 – 38
= 2
APPEARS IN
RELATED QUESTIONS
For a certain frequency distribution, the value of mean is 20 and mode is 11. Find the value of median.
The following table shows the information regarding the milk collected from farmers on a milk collection centre and the content of fat in the milk, measured by a lactometer. Find the mode of fat content.
Content of fat (%) | 2 - 3 | 3 - 4 | 4 - 5 | 5 - 6 | 6 - 7 |
Milk collected (Litre) | 30 | 70 | 80 | 60 | 20 |
The following frequency distribution table shows the number of mango trees in a grove and their yield of mangoes, and also the cumulative frequencies. Find the median of the data.
Class (No. of mangoes) |
Frequency (No. of trees) |
Cumulative frequency (less than) |
50-100 | 33 | 33 |
100-150 | 30 | 63 |
150-200 | 90 | 153 |
200-250 | 80 | 233 |
250-300 | 17 | 250 |
The median of the following data is 50. Find the values of p and q, if the sum of all the frequencies is 90.
Marks: | 20 -30 | 30-40 | 40-50 | 50-60 | 60-70 | 70-80 | 80-90 |
Frequency: | P | 15 | 25 | 20 | q | 8 | 10 |
Find the median of:
66, 98, 54, 92, 87, 63, 72.
The median of set of 9 distinct observations is 20.5. If each of the largest 4 observations of the set is increased by 2, then the median of the new set ______.
The median of an ungrouped data and the median calculated when the same data is grouped are always the same. Do you think that this is a correct statement? Give reason.
Calculate the median of marks of students for the following distribution:
Marks | Number of students |
More than or equal to 0 | 100 |
More than or equal to 10 | 93 |
More than or equal to 20 | 88 |
More than or equal to 30 | 70 |
More than or equal to 40 | 59 |
More than or equal to 50 | 42 |
More than or equal to 60 | 34 |
More than or equal to 70 | 20 |
More than or equal to 80 | 11 |
More than or equal to 90 | 4 |
Yoga is an ancient practice which is a form of meditation and exercise. By practising yoga, we not even make our body healthy but also achieve inner peace and calmness. The International Yoga Day is celebrated on the 21st of June every year since 2015. |
Age Group | 15 – 25 | 25 – 35 | 35 – 45 | 45 –55 | 55 –65 | 65 –75 | 75 – 85 |
Number of People |
8 | 10 | 15 | 25 | 40 | 24 | 18 |
Based on the above, find the following:
- Find the median age of people enrolled for the camp.
- If x more people of the age group 65 – 75 had enrolled for the camp, the mean age would have been 58. Find the value of x.
Find the modal and median classes of the following distribution.
Class | 0 – 20 | 20 – 40 | 40 – 60 | 60 – 80 | 80 – 100 |
Frequency | 11 | 22 | 19 | 18 | 7 |