Advertisements
Advertisements
Question
The following frequency distribution table shows the number of mango trees in a grove and their yield of mangoes, and also the cumulative frequencies. Find the median of the data.
Class (No. of mangoes) |
Frequency (No. of trees) |
Cumulative frequency (less than) |
50-100 | 33 | 33 |
100-150 | 30 | 63 |
150-200 | 90 | 153 |
200-250 | 80 | 233 |
250-300 | 17 | 250 |
Solution
Σfi = N = 250 ∴ `N/2` = 125 ∴ f = 90
Also, c. f. = 63 and h = 50 and L = 150
Median `= L +[( N/2-C.F.)/f]` × h
`= 150 + [(125-63)/90]` × 50
= 150 + 34.4 = 184.4
APPEARS IN
RELATED QUESTIONS
The following table shows ages of 3000 patients getting medical treatment in a hospital on a particular day :
Age (in years) | No. of Patients |
10-20 | 60 |
20-30 | 42 |
30-40 | 55 |
40-50 | 70 |
50-60 | 53 |
60-70 | 20 |
Find the median age of the patients.
For a certain frequency distribution, the value of mean is 20 and mode is 11. Find the value of median.
Calculate the median from the following data:
Marks below: | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 |
No. of students: | 15 | 35 | 60 | 84 | 96 | 127 | 198 | 250 |
An incomplete distribution is given below:
Variable: | 10-20 | 20-30 | 30-40 | 40-50 | 50-60 | 60-70 | 70-80 |
Frequency: | 12 | 30 | - | 65 | - | 25 | 18 |
You are given that the median value is 46 and the total number of items is 230.
(i) Using the median formula fill up missing frequencies.
(ii) Calculate the AM of the completed distribution.
If the median of the following data is 32.5, find the missing frequencies.
Class interval: | 0 - 10 | 10 - 20 | 20 - 30 | 30 - 40 | 40 - 50 | 50 - 60 | 60 - 70 | Total |
Frequency: | f1 | 5 | 9 | 12 | f2 | 3 | 2 | 40 |
Compute the median for the following data:
Marks | No. of students |
More than 150 | 0 |
More than 140 | 12 |
More than 130 | 27 |
More than 120 | 60 |
More than 110 | 105 |
More than 100 | 124 |
More than 90 | 141 |
More than 80 | 150 |
A survey regarding the height (in cm) of 51 girls of class X of a school was conducted and the following data was obtained:
Height in cm | Number of Girls |
Less than 140 | 4 |
Less than 145 | 11 |
Less than 150 | 29 |
Less than 155 | 40 |
Less than 160 | 46 |
Less than 165 | 51 |
Find the median height.
The marks obtained by 19 students of a class are given below:
27, 36, 22, 31, 25, 26, 33, 24, 37, 32, 29, 28, 36, 35, 27, 26, 32, 35 and 28.
Find:
- Median
- Lower quartile
- Upper quartile
- Inter-quartile range
The weight of 60 boys are given in the following distribution table:
Weight (kg) | 37 | 38 | 39 | 40 | 41 |
No. of boys | 10 | 14 | 18 | 12 | 6 |
Find:
- Median
- Lower quartile
- Upper quartile
- Inter-quartile range
Compute mean from the following data:
Marks | 0 – 7 | 7 – 14 | 14 – 21 | 21 – 28 | 28 – 35 | 35 – 42 | 42 – 49 |
Number of Students | 3 | 4 | 7 | 11 | 0 | 16 | 9 |
In the following data the median of the runs scored by 60 top batsmen of the world in one-day international cricket matches is 5000. Find the missing frequencies x and y.
Runs scored | 2500 – 3500 | 3500 – 4500 | 4500 – 5500 | 5500 – 6500 | 6500 – 7500 | 7500 - 8500 |
Number of batsman | 5 | x | y | 12 | 6 | 2 |
The median of first 10 prime numbers is
Find the Median of the following distribution:
x | 3 | 5 | 10 | 12 | 8 | 15 |
f | 2 | 4 | 6 | 10 | 8 | 7 |
Obtain the median for the following frequency distribution:
x : | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
f : | 8 | 10 | 11 | 16 | 20 | 25 | 15 | 9 | 6 |
For the following distribution
Marks | 0 - 10 | 10 - 20 | 20 - 30 | 30 - 40 | 40 - 50 |
No. of Students | 3 | 9 | 13 | 10 | 5 |
the number of students who got marks less than 30 is?
Consider the data:
Class | 65 – 85 | 85 – 105 | 105 – 125 | 125 – 145 | 145 – 165 | 165 – 185 | 185 – 205 |
Frequency | 4 | 5 | 13 | 20 | 14 | 7 | 4 |
The difference of the upper limit of the median class and the lower limit of the modal class is:
Find the values of a and b, if the sum of all the frequencies is 120 and the median of the following data is 55.
Marks | 30 – 40 | 40 – 50 | 50 –60 | 60 – 70 | 70 –80 | 80 – 90 |
Frequency | a | 40 | 27 | b | 15 | 24 |
The empirical relation between the mode, median and mean of a distribution is ______.
The median of first 10 natural numbers is ______.