Advertisements
Advertisements
Question
The empirical relation between the mode, median and mean of a distribution is ______.
Options
Mode = 3 Median – 2 Mean
Mode = 3 Mean – 2 Median
Mode = 2 Median – 3 Mean
Mode = 2 Mean – 3 Median
Solution
The empirical relation between the mode, median and mean of a distribution is Mode = 3 Median – 2 Mean.
Explanation:
The empirical relation between mean, mode and median is
Mode = 3 Median – 2 Mean
APPEARS IN
RELATED QUESTIONS
The median of the following observations
11, 12, 14, (x - 2), (x + 4), (x + 9), 32, 38, 47 arranged in ascending order is 24.
Find the value of x and hence find the mean.
Compute mean from the following data:
Marks | 0 – 7 | 7 – 14 | 14 – 21 | 21 – 28 | 28 – 35 | 35 – 42 | 42 – 49 |
Number of Students | 3 | 4 | 7 | 11 | 0 | 16 | 9 |
The median of the following data is 50. Find the values of p and q, if the sum of all the frequencies is 90.
Marks: | 20 -30 | 30-40 | 40-50 | 50-60 | 60-70 | 70-80 | 80-90 |
Frequency: | P | 15 | 25 | 20 | q | 8 | 10 |
If the median of the data: 6, 7, x − 2, x, 17, 20, written in ascending order, is 16. Then x=
If the mean of the following distribution is 3, find the value of p.
x | 1 | 2 | 3 | 5 | p + 4 |
f | 9 | 6 | 9 | 3 | 6 |
For the following distribution
Marks | 0 - 10 | 10 - 20 | 20 - 30 | 30 - 40 | 40 - 50 |
No. of Students | 3 | 9 | 13 | 10 | 5 |
the number of students who got marks less than 30 is?
Heights of 50 students of class X of a school are recorded and following data is obtained:
Height (in cm) | 130 – 135 | 135 – 140 | 140 – 145 | 145 – 150 | 150 – 155 | 155 – 160 |
Number of students | 4 | 11 | 12 | 7 | 10 | 6 |
Find the median height of the students.
Find the median of the following frequency distribution:
Class: | 0 – 20 | 20 – 40 | 40 – 60 | 60 – 80 | 80 – 100 |
Frequency: | 6 | 8 | 5 | 9 | 7 |
The monthly expenditure on milk in 200 families of a Housing Society is given below:
Monthly Expenditure (in ₹) |
1000 – 1500 | 1500 – 2000 | 2000 – 2500 | 2500 – 3000 | 3000 – 3500 | 3500 – 4000 | 4000 – 4500 | 4500 – 5000 |
Number of families | 24 | 40 | 33 | x | 30 | 22 | 16 | 7 |
Find the value of x and also, find the median and mean expenditure on milk.
A survey conducted on 20 households in a locality by a group of students resulted in the following frequency table for the number of family members in a household:
Family size | 1 – 3 | 3 – 5 | 5 – 7 | 7 – 9 | 9 – 11 |
Numbers of Families | 7 | 8 | 2 | 2 | 1 |
Find the median of this data.