Advertisements
Advertisements
Question
The median of the following observations
11, 12, 14, (x - 2), (x + 4), (x + 9), 32, 38, 47 arranged in ascending order is 24.
Find the value of x and hence find the mean.
Solution
The observations in ascending order are:
11, 12, 14, (x – 2), (x + 4), (x + 9), 32, 38, 47
Number of observations = n = 9 (odd)
Median = `((n+1)/2)^"th"`observation = 5th observation
∴ x + 4 = 24
`=> x = 20`
Thus, the observations are 11, 12, 14, 18, 24, 29, 32, 38, 47
`:. "Mean" = (11 + 12 + 14 + 18 + 24 + 29 + 32 + 38 + 47)/9 = 225/9 = 25`
APPEARS IN
RELATED QUESTIONS
Calculate the missing frequency from the following distribution, it being given that the median of the distribution is 24.
Age in years | 0 - 10 | 10 - 20 | 20 - 30 | 30 - 40 | 40 - 50 |
No. of persons | 5 | 25 | ? | 18 | 7 |
An incomplete distribution is given below:
Variable: | 10-20 | 20-30 | 30-40 | 40-50 | 50-60 | 60-70 | 70-80 |
Frequency: | 12 | 30 | - | 65 | - | 25 | 18 |
You are given that the median value is 46 and the total number of items is 230.
(i) Using the median formula fill up missing frequencies.
(ii) Calculate the AM of the completed distribution.
In a hospital, the ages of diabetic patients were recorded as follows. Find the median age.
Age (in years) |
0 – 15 | 15 – 30 | 30 – 45 | 45 – 60 | 60 - 75 |
No. of patients | 5 | 20 | 40 | 50 | 25 |
Find the correct answer from the alternatives given.
Distance Covered per litre (km) | 12 - 14 | 14 - 16 | 16 - 18 | 18 - 20 |
No. of cars | 11 | 12 | 20 | 7 |
The median of the distances covered per litre shown in the above data is in the group . . . . . .
A student draws a cumulative frequency curve for the marks obtained by 40 students of a class as shown below. Find the median marks obtained by the students of the class.
The following are the marks scored by the students in the Summative Assessment exam
Class | 0 − 10 | 10 − 20 | 20 − 30 | 30 − 40 | 40 − 50 | 50 − 60 |
No. of Students | 2 | 7 | 15 | 10 | 11 | 5 |
Calculate the median.
For the following distribution
Marks | 0 - 10 | 10 - 20 | 20 - 30 | 30 - 40 | 40 - 50 |
No. of Students | 3 | 9 | 13 | 10 | 5 |
the number of students who got marks less than 30 is?
The Median when it is given that mode and mean are 8 and 9 respectively, is ______.
The abscissa of the point of intersection of the less than type and of the more than type cumulative frequency curves of a grouped data gives its ______.
A life insurance agent found the following data for distribution of ages of 100 policy holders. Calculate the median age, if policies are given only to persons having age 18 years onwards but less than 60 year.
Age (in years) | Number of policy holders |
Below 20 | 2 |
Below 25 | 6 |
Below 30 | 24 |
Below 35 | 45 |
Below 40 | 78 |
Below 45 | 89 |
Below 50 | 92 |
Below 55 | 98 |
Below 60 | 100 |