Advertisements
Advertisements
Question
The following are the marks scored by the students in the Summative Assessment exam
Class | 0 − 10 | 10 − 20 | 20 − 30 | 30 − 40 | 40 − 50 | 50 − 60 |
No. of Students | 2 | 7 | 15 | 10 | 11 | 5 |
Calculate the median.
Solution
Class Interval | No. of students frequency |
Cumulative frequency |
0 − 10 | 2 | 2 |
10 − 20 | 7 | 9 |
20 − 30 | 15 | 24 |
30 − 40 | 10 | 34 |
40 − 50 | 11 | 45 |
50 − 60 | 5 | 50 |
N = 50 |
`"N"/2 = 50/2`
= 25
Here l = 30, f = 10, m = 24 and c = 10
Median = `"l" + (("N"/2 - "m") xx "c")/f`
= `30 + ((25 - 24)10)/10`
= 30 + 1
= 31
∴ Median = 31
APPEARS IN
RELATED QUESTIONS
For a certain frequency distribution, the values of Assumed mean (A) = 1300, `sumf_id_i` = 900 and `sumfi` = 100. Find the value of mean (`barx`) .
The table below shows the salaries of 280 persons :
Salary (In thousand Rs) | No. of Persons |
5 – 10 | 49 |
10 – 15 | 133 |
15 – 20 | 63 |
20 – 25 | 15 |
25 – 30 | 6 |
30 – 35 | 7 |
35 – 40 | 4 |
40 – 45 | 2 |
45 – 50 | 1 |
Calculate the median salary of the data.
Compute the median for the following data:
Marks | No. of students |
Less than 10 | 0 |
Less than 30 | 10 |
Less than 50 | 25 |
Less than 70 | 43 |
Less than 90 | 65 |
Less than 110 | 87 |
Less than 130 | 96 |
Less than 150 | 100 |
Estimate the median for the given data by drawing an ogive:
Class | 0 – 10 | 10 – 20 | 20 – 30 | 30 – 40 | 40 – 50 |
Frequency | 4 | 9 | 15 | 14 | 8 |
Calculate the median for the following data:
Class | 19 – 25 | 26 – 32 | 33 – 39 | 40 – 46 | 47 – 53 | 54 - 60 |
Frequency | 35 | 96 | 68 | 102 | 35 | 4 |
The arithmetic mean and mode of a data are 24 and 12 respectively, then its median is
Find the median of the scores 7, 10, 5, 8, 9.
Below is the given frequency distribution of words in an essay:
Number of words | Number of Candidates |
600 - 800 | 12 |
800 - 1000 | 14 |
1000 - 1200 | 40 |
1200 - 1400 | 15 |
1400 - 1600 | 19 |
Find the mean number of words written.
Obtain the median for the following frequency distribution:
x : | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
f : | 8 | 10 | 11 | 16 | 20 | 25 | 15 | 9 | 6 |
The median of set of 9 distinct observations is 20.5. If each of the largest 4 observations of the set is increased by 2, then the median of the new set ______.