Advertisements
Advertisements
Question
Compute mean from the following data:
Marks | 0 – 7 | 7 – 14 | 14 – 21 | 21 – 28 | 28 – 35 | 35 – 42 | 42 – 49 |
Number of Students | 3 | 4 | 7 | 11 | 0 | 16 | 9 |
Solution
Class | Frequency (f) | Cumulative Frequency (cf) |
0 – 7 | 3 | 3 |
7 – 14 | 4 | 7 |
14 – 21 | 7 | 14 |
21 - 28 | 11 | 25 |
28 – 35 | 0 | 25 |
35 – 42 | 16 | 41 |
42 – 49 | 9 | 50 |
N = Σ𝑓 = 50 |
Now, N = 50 ⇒ `N/2` = 25.
The cumulative frequency just greater than 25 is 41 and the corresponding class is 35 – 42.
Thus, the median class is 35 – 42.
∴ l = 35, h = 7, f = 16, cf = c.f. of preceding class = 25 and `N/2` = 25.
Now,
Median =` l +((N/2−c_f)/f) × h`
Median `= 35 + ((25 − 25)/16) xx 7`
= 35 + 0
= 35
Hence, the median age is 35 years.
APPEARS IN
RELATED QUESTIONS
The weights (in kg) of 10 students of a class are given below:
21, 28.5, 20.5, 24, 25.5, 22, 27.5, 28, 21 and 24.
Find the median of their weights.
In a hospital, the ages of diabetic patients were recorded as follows. Find the median age.
Age (in years) |
0 – 15 | 15 – 30 | 30 – 45 | 45 – 60 | 60 - 75 |
No. of patients | 5 | 20 | 40 | 50 | 25 |
Calculate the median for the following data:
Class | 19 – 25 | 26 – 32 | 33 – 39 | 40 – 46 | 47 – 53 | 54 - 60 |
Frequency | 35 | 96 | 68 | 102 | 35 | 4 |
The following table shows the number of patients of different age groups admitted to a hospital for treatment on a day. Find the median of ages of the patients.
Age- group (Yrs.) | 10-20 | 20-30 | 30-40 | 40-50 | 50-60 | 60-70 |
No. of patients | 40 | 32 | 35 | 45 | 33 | 15 |
The following are the marks scored by the students in the Summative Assessment exam
Class | 0 − 10 | 10 − 20 | 20 − 30 | 30 − 40 | 40 − 50 | 50 − 60 |
No. of Students | 2 | 7 | 15 | 10 | 11 | 5 |
Calculate the median.
The abscissa of the point of intersection of the less than type and of the more than type cumulative frequency curves of a grouped data gives its ______.
Consider the following frequency distribution:
Class | 0 – 5 | 6 – 11 | 12 – 17 | 18 – 23 | 24 – 29 |
Frequency | 13 | 10 | 15 | 8 | 11 |
The upper limit of the median class is:
Will the median class and modal class of grouped data always be different? Justify your answer.
The maximum speeds, in km per hour, of 35 cars in a race are given as follows:
Speed (km/h) | 85 – 100 | 100 – 115 | 115 – 130 | 130 – 145 |
Number of cars | 5 | 8 | 13 | 9 |
Calculate the median speed.
Using the empirical relationship between the three measures of central tendency, find the median of a distribution, whose mean is 169 and mode is 175.