Advertisements
Advertisements
Question
The maximum speeds, in km per hour, of 35 cars in a race are given as follows:
Speed (km/h) | 85 – 100 | 100 – 115 | 115 – 130 | 130 – 145 |
Number of cars | 5 | 8 | 13 | 9 |
Calculate the median speed.
Solution
Speed (km/h) | Number of cars `(f)` |
Cumulative frequency `(c.f.)` |
85 – 100 | 5 | 5 |
100 – 115 | 8 | 13 |
115 – 130 | 13 | 26 |
130 –145 | 9 | 35 |
Here, N = 35
∴ `N/2 = 35/2` = 17.5
Cumulative frequency (c.f.) just greater than 17.5 is 26, belonging to class interval 115 – 130.
∴ Median class = 115 – 130
So, L = 115, h = 15, f = 13, cf. = 13.
Median = `L + ((N/2 - c.f.)/f) xx h`
= `115 + ((17.5 - 13)/13) xx 15`
= `115 + (4.5/13) xx 15`
= 115 + 5.192
= 120.192
Hence, the median speed of cars is 120.192 km/h.
APPEARS IN
RELATED QUESTIONS
For a certain frequency distribution, the value of Mean is 101 and Median is 100. Find the value of Mode.
If `sumf_ix_i=75 and sumfi=15` , then find the mean x .
The distribution below gives the weights of 30 students of a class. Find the median weight of the students.
Weight (in kg) | 40−45 | 45−50 | 50−55 | 55−60 | 60−65 | 65−70 | 70−75 |
Number of students | 2 | 3 | 8 | 6 | 6 | 3 | 2 |
The following is the distribution of the size of certain farms from a taluka (tehasil):
Size of Farms (in acres) |
Number of Farms |
5 – 15 | 7 |
15 – 25 | 12 |
25 – 35 | 17 |
35 – 45 | 25 |
45 – 55 | 31 |
55 – 65 | 5 |
65 – 75 | 3 |
Find median size of farms.
Following are the lives in hours of 15 pieces of the components of aircraft engine. Find the median:
715, 724, 725, 710, 729, 745, 694, 699, 696, 712, 734, 728, 716, 705, 719.
An incomplete distribution is given below:
Variable: | 10-20 | 20-30 | 30-40 | 40-50 | 50-60 | 60-70 | 70-80 |
Frequency: | 12 | 30 | - | 65 | - | 25 | 18 |
You are given that the median value is 46 and the total number of items is 230.
(i) Using the median formula fill up missing frequencies.
(ii) Calculate the AM of the completed distribution.
The ages of 37 students in a class are given in the following table:
Age (in years) | 11 | 12 | 13 | 14 | 15 | 16 |
Frequency | 2 | 4 | 6 | 10 | 8 | 7 |
Compute mean from the following data:
Marks | 0 – 7 | 7 – 14 | 14 – 21 | 21 – 28 | 28 – 35 | 35 – 42 | 42 – 49 |
Number of Students | 3 | 4 | 7 | 11 | 0 | 16 | 9 |
Find the correct answer from the alternatives given.
Distance Covered per litre (km) | 12 - 14 | 14 - 16 | 16 - 18 | 18 - 20 |
No. of cars | 11 | 12 | 20 | 7 |
The median of the distances covered per litre shown in the above data is in the group . . . . . .
The following frequency distribution table shows the number of mango trees in a grove and their yield of mangoes, and also the cumulative frequencies. Find the median of the data.
Class (No. of mangoes) |
Frequency (No. of trees) |
Cumulative frequency (less than) |
50-100 | 33 | 33 |
100-150 | 30 | 63 |
150-200 | 90 | 153 |
200-250 | 80 | 233 |
250-300 | 17 | 250 |
In the following table, Σf = 200 and mean = 73. Find the missing frequencies f1, and f2.
x | 0 | 50 | 100 | 150 | 200 | 250 |
f | 46 | f1 | f2 | 25 | 10 | 5 |
The prices of different articles and demand for them is shown in the following frequency distribution table. Find the median of the prices.
Price (Rupees)
|
20 less than | 20 – 40 | 40 – 60 | 60 – 80 | 80 – 100 |
No. of articles | 140 | 100 | 80 | 60 | 20 |
Mode and mean of a data are 12k and 15A. Median of the data is ______.
If 35 is removed from the data, 30, 34, 35, 36, 37, 38, 39, 40 then the median increases by ______.
The median of the following data is 525. Find the values of x and y, if the total frequency is 100.
Class interval | Frequency |
0 – 100 | 2 |
100 – 200 | 5 |
200 – 300 | x |
300 – 400 | 12 |
400 – 500 | 17 |
500 – 600 | 20 |
600 – 700 | y |
700 – 800 | 9 |
800 – 900 | 7 |
900 – 1000 | 4 |
Yoga is an ancient practice which is a form of meditation and exercise. By practising yoga, we not even make our body healthy but also achieve inner peace and calmness. The International Yoga Day is celebrated on the 21st of June every year since 2015. |
Age Group | 15 – 25 | 25 – 35 | 35 – 45 | 45 –55 | 55 –65 | 65 –75 | 75 – 85 |
Number of People |
8 | 10 | 15 | 25 | 40 | 24 | 18 |
Based on the above, find the following:
- Find the median age of people enrolled for the camp.
- If x more people of the age group 65 – 75 had enrolled for the camp, the mean age would have been 58. Find the value of x.
Using the empirical relationship between the three measures of central tendency, find the median of a distribution, whose mean is 169 and mode is 175.
The monthly expenditure on milk in 200 families of a Housing Society is given below:
Monthly Expenditure (in ₹) |
1000 – 1500 | 1500 – 2000 | 2000 – 2500 | 2500 – 3000 | 3000 – 3500 | 3500 – 4000 | 4000 – 4500 | 4500 – 5000 |
Number of families | 24 | 40 | 33 | x | 30 | 22 | 16 | 7 |
Find the value of x and also, find the median and mean expenditure on milk.