English

The following is the distribution of the size of certain farms from a taluka (tehasil) - Algebra

Advertisements
Advertisements

Question

The following is the distribution of the size of certain farms from a taluka (tehasil):

Size of Farms
(in acres)
Number of Farms
5 – 15 7
15 – 25 12
25 – 35 17
35 – 45 25
45 – 55 31
55 – 65 5
65 – 75 3

Find median size of farms.

Solution

Calculation of the Median size of farms.

Size of Farms
(in acres)
f cf
5 – 15 7 7
15 – 25 12 19
25 – 35 17 36
35 – 45 25 61
45 – 55 31 92
55 – 65 5 97
65 – 75 3 100

We have N=100 ⇒ N/2=50

The cumulative frequency just greater than N/2 is 61 and the corresponding class is 35-45.
Thus, 35-45 is the median class such that l =35, f =25, cf =36,h =10.

`Median=l+(N/2-cf)/fxxh`

`=35+(50-36)/25xx10`

`=35+5.6`

`=40.6`

 

shaalaa.com
  Is there an error in this question or solution?
2016-2017 (March) Set A

RELATED QUESTIONS

Below is the given frequency distribution of words in an essay

Number of Words Number of Candidates
600 – 800 8
800 – 1000 22
1000 – 1200 40
1200 – 1400 18
1400 - 1600 12

Find the mean number of words written.


The following table shows ages of 3000 patients getting medical treatment in a hospital on a particular day : 

Age (in years) No. of Patients
10-20 60
20-30 42
30-40 55
40-50 70
50-60 53
60-70 20

Find the median age of the patients.


A life insurance agent found the following data for distribution of ages of 100 policy holders. Calculate the median age, if policies are given only to persons having age 18 years onwards but less than 60 years.

Age (in years) Number of policy holders
Below 20 2
20 - 25 4
25 - 30 18
30 - 35 21
35 - 40 33
40 - 45 11
45 - 50 3
50 - 55 6
55 - 60 2

Compute the median for the following data:

Marks No. of students
Less than 10 0
Less than 30 10
Less than 50 25
Less than 70 43
Less than 90 65
Less than 110 87
Less than 130 96
Less than 150 100

A survey regarding the height (in cm) of 51 girls of class X of a school was conducted and the following data was obtained:

Height in cm Number of Girls
Less than 140 4
Less than 145 11
Less than 150 29
Less than 155 40
Less than 160 46
Less than 165 51

Find the median height.


The marks obtained by 19 students of a class are given below:

27, 36, 22, 31, 25, 26, 33, 24, 37, 32, 29, 28, 36, 35, 27, 26, 32, 35 and 28.

Find:

  1. Median
  2. Lower quartile
  3. Upper quartile
  4. Inter-quartile range

The ages of 37 students in a class are given in the following table: 

Age (in years) 11 12 13 14 15 16
Frequency  2 4 6 10 8 7

Compute mean from the following data:

Marks 0 – 7 7 – 14 14 – 21 21 – 28 28 – 35 35 – 42 42 – 49
Number of Students 3 4 7 11 0 16 9

The following frequency distribution table gives the ages of 200 patients treated in a hospital in a week. Find the mode of ages of the patients.

Age (years) Less than 5 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29
No. of patients 38 32 50 36 24 20

In the graphical representation of a frequency distribution, if the distance between mode and mean is ktimes the distance between median and mean, then write the value of k.


Find the Median of the following distribution:

x 3 5 10 12 8 15
f 2 4 6 10 8 7

The median of the following observations 11, 12, 14, (x – 2), (x + 4), (x + 9), 32, 38, 47 arranged in ascending order is 24. Find the value of x and hence find the mean.


The median of an ungrouped data and the median calculated when the same data is grouped are always the same. Do you think that this is a correct statement? Give reason.


Will the median class and modal class of grouped data always be different? Justify your answer.


The maximum speeds, in km per hour, of 35 cars in a race are given as follows:

Speed (km/h) 85 – 100 100 – 115 115 – 130 130 – 145
Number of cars 5 8 13 9

Calculate the median speed.


Calculate the median of marks of students for the following distribution:

Marks Number of students
More than or equal to 0 100
More than or equal to 10 93
More than or equal to 20 88
More than or equal to 30 70
More than or equal to 40 59
More than or equal to 50 42
More than or equal to 60 34
More than or equal to 70 20
More than or equal to 80 11
More than or equal to 90 4

The median of the following data is 525. Find the values of x and y, if the total frequency is 100.

Class interval Frequency
0 – 100 2
100 – 200 5
200 – 300 x
300 – 400 12
400 – 500 17
500 – 600 20
600 – 700 y
700 – 800 9
800 – 900 7
900 – 1000 4

Find the modal and median classes of the following distribution.

Class 0 – 20 20 – 40 40 – 60 60 – 80 80 – 100
Frequency 11 22 19 18 7

If in a frequency distribution, the mean and median are 21 and 22 respectively, then its mode is approximately ______.


The empirical relation between the mode, median and mean of a distribution is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×