Advertisements
Advertisements
Question
If the median of the following data is 32.5, find the missing frequencies.
Class interval: | 0 - 10 | 10 - 20 | 20 - 30 | 30 - 40 | 40 - 50 | 50 - 60 | 60 - 70 | Total |
Frequency: | f1 | 5 | 9 | 12 | f2 | 3 | 2 | 40 |
Solution
Class interval | Frequency | Cumulative frequency |
0 - 10 | f1 | f1 |
10 - 20 | 5 | 5 + f1 |
20 - 30 | 9 | 14 + f1 |
30 - 40 | 12 | 26 + f1 |
40 - 50 | f2 | 26 + f1 + f2 |
50 - 60 | 3 | 29 + f1 + f2 |
60 - 70 | 2 | 31 + f1 + f2 |
N = 40 |
Given
Median = 32.5
The median class = 30 - 40
l = 30, h = 40 - 30 = 10, f = 12 and F = 14 + f1
Median `=l+(N/2-F)/fxxh`
`rArr32.5=30+(20-(14+f1))/12xx10`
`rArr32.5-30=(20-14-f1)/12xx10`
`rArr2.5=(6-f1)/12xx10`
`rArr2.5=(6-f1)/6xx5`
⇒ 2.5 x 6 = (6 - f1) x 5
⇒ 15 = (6 - f1) x 5
⇒ 15/5 = 6 - f1
⇒ 3 = 6 - f1
⇒ f1 = 6 - 3
⇒ f1 = 3
Given sum of frequencies = 40
⇒ f1 + 5 + 9 + 12 + f2 + 3 + 2 = 40
⇒ 3 + 5 + 9 + 12 + f2 + 3 + 2 = 40
⇒ 34 + f2 = 40
⇒ f2 = 40 - 34
⇒ f2 = 6
∴ f1 = 3 and f2 = 6
APPEARS IN
RELATED QUESTIONS
Below is the given frequency distribution of words in an essay
Number of Words | Number of Candidates |
600 – 800 | 8 |
800 – 1000 | 22 |
1000 – 1200 | 40 |
1200 – 1400 | 18 |
1400 - 1600 | 12 |
Find the mean number of words written.
Following is the distribution of I.Q. of loo students. Find the median I.Q.
I.Q.: | 55 - 64 | 65 - 74 | 75 - 84 | 85 - 94 | 95 - 104 | 105 - 114 | 115 - 124 | 125 - 134 | 135 - 144 |
No of Students: | 1 | 2 | 9 | 22 | 33 | 22 | 8 | 2 | 1 |
The median of the following data is 525. Find the missing frequency, if it is given that there are 100 observations in the data:
Class interval | Frequency |
0 - 100 | 2 |
100 - 200 | 5 |
200 - 300 | f1 |
300 - 400 | 12 |
400 - 500 | 17 |
500 - 600 | 20 |
600 - 700 | f2 |
700 - 800 | 9 |
800 - 900 | 7 |
900 - 1000 | 4 |
The median of the following data is 16. Find the missing frequencies a and b if the total of frequencies is 70.
Class | 0 – 5 | 5 – 10 | 10 – 15 | 15 – 20 | 20 – 25 | 25 – 30 | 30 – 35 | 35 – 40 |
Frequency | 12 | a | 12 | 15 | b | 6 | 6 | 4 |
If the median of the data: 6, 7, x − 2, x, 17, 20, written in ascending order, is 16. Then x=
The median of first 10 prime numbers is
Find the Median of the following distribution:
x | 3 | 5 | 10 | 12 | 8 | 15 |
f | 2 | 4 | 6 | 10 | 8 | 7 |
Mode and mean of a data are 12k and 15A. Median of the data is ______.
Weekly income of 600 families is tabulated below:
Weekly income (in Rs) |
Number of families |
0 – 1000 | 250 |
1000 – 2000 | 190 |
2000 – 3000 | 100 |
3000 – 4000 | 40 |
4000 – 5000 | 15 |
5000 – 6000 | 5 |
Total | 600 |
Compute the median income.
The empirical relation between the mode, median and mean of a distribution is ______.