मराठी

Find the Missing Frequencies and the Median for the Following Distribution If the Mean is 1.46. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the missing frequencies and the median for the following distribution if the mean is 1.46.

No. of accidents: 0 1 2 3 4 5 Total
Frequency (No. of days): 46 ? ? 25 10 5 200

उत्तर

No. of
accidents (x)
No. of days (f) fx
0 45 0
1 x x
2 y 2y
3 25 75
4 10 40
5 5 25
  N = 200 `sumf_1x_1=x+2y+140`

Given, N = 200

⇒ 46 + x + y + 25 + 10 + 5 = 200

⇒ 86 + x + y = 200

⇒ x + y = 200 - 86

⇒ x+ y = 114                   ..............(1)

And Mean = 1.46

`rArr(sumfx)/N=1.46`

`rArr(x+2y+140)/200=1.46`

⇒ x + 2y + 140 = 1.46 x 200

⇒ x + 2y + 140 = 292

⇒ x + 2y = 292 - 140

⇒ x + 2y = 152                 ................(2)

Subtract equation (1) from equation (2)

⇒ x + 2y - (x+ y) = 152 - 114

⇒ x + 2y - x - y = 38

⇒ y = 38

Put the value of y in (1),

⇒ x+ y = 114

⇒ x + 38 = 114

⇒ x = 114 - 38

⇒ x = 76

Hence, the missing frequencies are 38 and 76.

(2) Calculation of median.

No. of
accidents (x)
No. of days (f) Cumulative Frequency
0 45 46
1 76 122
2 38 160
3 25 185
4 10 195
5 5 200
  N = 200  

We have

N = 200

So, `N/2=200/2=100`

Thus, the cumulative frequency just greater than 100 is 122 and the value corresponding to 122 is 1.

Hence, the median is 1.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 15: Statistics - Exercise 15.4 [पृष्ठ ३५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 15 Statistics
Exercise 15.4 | Q 10 | पृष्ठ ३५

व्हिडिओ ट्यूटोरियलVIEW ALL [4]

संबंधित प्रश्‍न

The mean of following numbers is 68. Find the value of ‘x’. 45, 52, 60, x, 69, 70, 26, 81 and 94. Hence, estimate the median.


The numbers 6, 8, 10, 12, 13 and x are arranged in an ascending order. If the mean of the observations is equal to the median, find the value of x


The following table gives the frequency distribution of married women by age at marriage:

Age (in years) Frequency
15-19 53
20-24 140
25-29 98
30-34 32
35-39 12
40-44 9
45-49 5
50-54 3
55-59 3
60 and above 2

Calculate the median and interpret the results.


The marks obtained by 19 students of a class are given below:

27, 36, 22, 31, 25, 26, 33, 24, 37, 32, 29, 28, 36, 35, 27, 26, 32, 35 and 28.

Find:

  1. Median
  2. Lower quartile
  3. Upper quartile
  4. Inter-quartile range

From the following data, find: 

Median 

25, 10, 40, 88, 45, 60, 77, 36, 18, 95, 56, 65, 7, 0, 38 and 83


Calculate the median from the following data:

Height(in cm) 135 - 140 140 - 145 145 - 150 150 - 155 155 - 160 160 - 165 165 - 170 170 - 175
Frequency 6 10 18 22 20 15 6 3

 


If the median of the following frequency distribution is 32.5, find the values of `f_1 and f_2`.

Class 0 – 10 10 – 20 20 – 30 30 -40 40 – 50 50 – 60 60 – 70 Total
Frequency `f_1`

 

5

9 12 `f_2` 3 2 40

 


Find the median wages for the following frequency distribution:

Wages per day (in Rs) 61 – 70 71 – 80 81 – 90 91 – 100 101 – 110 111 – 120
No. of women workers 5 15 20 30 20 8

 


The following frequency distribution table gives the ages of 200 patients treated in a hospital in a week. Find the mode of ages of the patients.

Age (years) Less than 5 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29
No. of patients 38 32 50 36 24 20

What is the value of the median of the data using the graph in the following figure of less than ogive and more than ogive?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×