हिंदी

An Incomplete Distribution is Given Below: Variable: 10-20 20-30 30-40 40-50 50-60 60-70 70-80 - Mathematics

Advertisements
Advertisements

प्रश्न

An incomplete distribution is given below:

Variable: 10-20 20-30 30-40 40-50 50-60 60-70 70-80
Frequency: 12 30 - 65 - 25 18

You are given that the median value is 46 and the total number of items is 230.

(i) Using the median formula fill up missing frequencies.

(ii) Calculate the AM of the completed distribution.

उत्तर

(i)

Class interval Frequency Cumulative
frequency
10-20 12 12
20-30 30 42
30-40 x 42 + x
40-50 65 107 + x
50-60 y 107 + x + y
60-70 25 132 + x + y
70-80 18 150 + x + y
  N = 230  

Given median = 46

Then, median class = 40 - 50

l = 40, h = 50 - 40 = 10, f = 65, F = 42 + x

Median `=l+((N/2)-F)/fxxh`

`rArr46=40+(115-(42+x))/65xx10`

`rArr46 - 40 = (115-42-x)/65xx10`

`rArr6=(73-x)/65=10`

`rArr(6xx65)/10=73-x`

`rArr390/10=73-x`

39 = 73 - x

x = 73 - 39

x = 34

Given N = 230

⇒ 12 + 30 + x + 65 + y + 25 + 18 = 230

⇒ 12 + 30 + 34 + 65 + y + 25 + 18 = 230

⇒ 184 + y = 230

⇒ y = 230 - 184

⇒ y = 46

 

(ii)

Class interval Mid value(x) Frequency(f) fx
10-20 15 12 180
20-30 25 30 750
30-40 35 34 1190
40-50 45 65 2925
50-60 55 46 2530
60-70 65 25 1625
70-80 75 18 1350
    N = 230 `sumfx=10550`

Mean `=(sumfx)/N`

`=10550/230=45.87`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 15: Statistics - Exercise 15.4 [पृष्ठ ३५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
अध्याय 15 Statistics
Exercise 15.4 | Q 11 | पृष्ठ ३५

वीडियो ट्यूटोरियलVIEW ALL [4]

संबंधित प्रश्न

The following table shows ages of 3000 patients getting medical treatment in a hospital on a particular day : 

Age (in years) No. of Patients
10-20 60
20-30 42
30-40 55
40-50 70
50-60 53
60-70 20

Find the median age of the patients.


For a certain frequency distribution, the values of Assumed mean (A) = 1300, `sumf_id_i` = 900 and `sumfi` = 100. Find the value of mean (`barx`) .

 


An incomplete distribution is given as follows:

Variable: 0 - 10 10 - 20 20 - 30 30 - 40 40 - 50 50 - 60 60 - 70
Frequency: 10 20 ? 40 ? 25 15

You are given that the median value is 35 and the sum of all the frequencies is 170. Using the median formula, fill up the missing frequencies.


The following table gives the frequency distribution of married women by age at marriage:

Age (in years) Frequency
15-19 53
20-24 140
25-29 98
30-34 32
35-39 12
40-44 9
45-49 5
50-54 3
55-59 3
60 and above 2

Calculate the median and interpret the results.


Compute the median for the following data:

Marks No. of students
More than 150 0
More than 140 12
More than 130 27
More than 120 60
More than 110 105
More than 100 124
More than 90 141
More than 80 150

The weights (in kg) of 10 students of a class are given below:

21, 28.5, 20.5, 24, 25.5, 22, 27.5, 28, 21 and 24.

Find the median of their weights. 


Calculate the median from the following data:

Height(in cm) 135 - 140 140 - 145 145 - 150 150 - 155 155 - 160 160 - 165 165 - 170 170 - 175
Frequency 6 10 18 22 20 15 6 3

 


The following table shows the number of patients of different age groups admitted to a hospital for treatment on a day. Find the median of ages of the patients.

Age- group (Yrs.) 10-20 20-30 30-40 40-50 50-60 60-70
No. of patients 40 32 35 45 33 15

 


If the mean of the following distribution is 3, find the value of p.

x 1 2 3 5 p + 4
f 9 6 9 3 6

The median of the following observations 11, 12, 14, (x – 2), (x + 4), (x + 9), 32, 38, 47 arranged in ascending order is 24. Find the value of x and hence find the mean.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×