Advertisements
Advertisements
प्रश्न
A life insurance agent found the following data for distribution of ages of 100 policy holders. Calculate the median age, if policies are given only to persons having age 18 years onwards but less than 60 year.
Age (in years) | Number of policy holders |
Below 20 | 2 |
Below 25 | 6 |
Below 30 | 24 |
Below 35 | 45 |
Below 40 | 78 |
Below 45 | 89 |
Below 50 | 92 |
Below 55 | 98 |
Below 60 | 100 |
उत्तर
Here, the width of the square is not uniform. There is no need to adjust the frequencies according to the class interval. The given frequency table is less than the type shown with higher class boundaries. The policy was offered only to individuals above 18 years of age but below 60 years of age. Therefore, the class intervals with their respective cumulative frequencies can be defined as follows:
Class interval | Cumulative Frequency |
Frequency |
18 - 20 | 2 | 2 |
20 - 25 | 6 | 6 - 2 = 4 |
25 - 30 | 24 | 24 - 6 = 18 |
30 - 35 | 45 | 45 - 24 = 21 |
35 - 40 | 78 | 78 - 45 = 33 |
40 - 45 | 89 | 89 - 78 = 11 |
45 - 50 | 92 | 92 - 89 = 3 |
50 - 55 | 98 | 98 - 92 = 6 |
55 - 60 | 100 | 100 - 98 = 2 |
From the table, it can be seen that n = 100.
The cumulative frequency (cf) is more than `n/2(100/2 = 50) 78`,
Which corresponds to the interval 35 – 40. Hence, median class = 35 – 40 Lower limit of median class (l) = 35 class.
Size (h) = 5 Frequency of median class (f) = 33 Cumulative frequency of classes preceding the median class (cf) = 45.
Median =` l + ((n/2-cf)/f)xxh`
= `35 + ((50-45)/33)xx5`
= `35 + 25/33`
= 35.76
Therefore, the average age is 35.76 years.
संबंधित प्रश्न
For a certain frequency distribution, the value of Mean is 101 and Median is 100. Find the value of Mode.
The following table shows ages of 3000 patients getting medical treatment in a hospital on a particular day :
Age (in years) | No. of Patients |
10-20 | 60 |
20-30 | 42 |
30-40 | 55 |
40-50 | 70 |
50-60 | 53 |
60-70 | 20 |
Find the median age of the patients.
Find the following table gives the distribution of the life time of 400 neon lamps:
Life time (in hours) | Number of lamps |
1500 – 2000 | 14 |
2000 – 2500 | 56 |
2500 – 3000 | 60 |
3000 – 3500 | 86 |
3500 – 4000 | 74 |
4000 – 4500 | 62 |
4500 – 5000 | 48 |
Find the median life time of a lamp.
If the median of the distribution given below is 28.5, find the values of x and y.
Class interval | Frequency |
0 - 10 | 5 |
10 - 20 | x |
20 - 30 | 20 |
30 - 40 | 15 |
40 - 50 | y |
50 - 60 | 5 |
Total | 60 |
Find the missing frequencies and the median for the following distribution if the mean is 1.46.
No. of accidents: | 0 | 1 | 2 | 3 | 4 | 5 | Total |
Frequency (No. of days): | 46 | ? | ? | 25 | 10 | 5 | 200 |
The following table gives the frequency distribution of married women by age at marriage:
Age (in years) | Frequency |
15-19 | 53 |
20-24 | 140 |
25-29 | 98 |
30-34 | 32 |
35-39 | 12 |
40-44 | 9 |
45-49 | 5 |
50-54 | 3 |
55-59 | 3 |
60 and above | 2 |
Calculate the median and interpret the results.
In a hospital, the ages of diabetic patients were recorded as follows. Find the median age.
Age (in years) |
0 – 15 | 15 – 30 | 30 – 45 | 45 – 60 | 60 - 75 |
No. of patients | 5 | 20 | 40 | 50 | 25 |
Calculate the median from the following data:
Height(in cm) | 135 - 140 | 140 - 145 | 145 - 150 | 150 - 155 | 155 - 160 | 160 - 165 | 165 - 170 | 170 - 175 |
Frequency | 6 | 10 | 18 | 22 | 20 | 15 | 6 | 3 |
If the median of the following frequency distribution is 32.5, find the values of `f_1 and f_2`.
Class | 0 – 10 | 10 – 20 | 20 – 30 | 30 -40 | 40 – 50 | 50 – 60 | 60 – 70 | Total |
Frequency | `f_1` |
5 |
9 | 12 | `f_2` | 3 | 2 | 40 |
Grouped frequency distribution of supply of milk to hotels and the number of hotels is given in the following table. Find the mode of the supply of milk.
Milk (Litre) | 1 - 3 | 3 - 5 | 5 - 7 | 7 - 9 | 9 - 11 | 11 - 13 |
No. of hotels | 7 | 5 | 15 | 20 | 35 | 18 |
Find the correct answer from the alternatives given.
Distance Covered per litre (km) | 12 - 14 | 14 - 16 | 16 - 18 | 18 - 20 |
No. of cars | 11 | 12 | 20 | 7 |
The median of the distances covered per litre shown in the above data is in the group . . . . . .
In the graphical representation of a frequency distribution, if the distance between mode and mean is ktimes the distance between median and mean, then write the value of k.
Write the median class of the following distribution:
Class-interval: | 0−10 | 10−20 | 20−30 | 30−40 | 40−50 | 50−60 | 60−70 |
Frequency: | 4 | 4 | 8 | 10 | 12 | 8 | 4 |
If the difference of Mode and Median of a data is 24, then the difference of median and mean is ______.
The abscissa of the point of intersection of less than type and of the more than types cumulative frequency curves of a grouped data gives its ______.
The following are the marks scored by the students in the Summative Assessment exam
Class | 0 − 10 | 10 − 20 | 20 − 30 | 30 − 40 | 40 − 50 | 50 − 60 |
No. of Students | 2 | 7 | 15 | 10 | 11 | 5 |
Calculate the median.
For the following distribution
Marks | 0 - 10 | 10 - 20 | 20 - 30 | 30 - 40 | 40 - 50 |
No. of Students | 3 | 9 | 13 | 10 | 5 |
the number of students who got marks less than 30 is?
Following is the distribution of the long jump competition in which 250 students participated. Find the median distance jumped by the students. Interpret the median
Distance (in m) |
0 – 1 | 1 – 2 | 2 – 3 | 3 – 4 | 4 – 5 |
Number of Students |
40 | 80 | 62 | 38 | 30 |
Heights of 50 students of class X of a school are recorded and following data is obtained:
Height (in cm) | 130 – 135 | 135 – 140 | 140 – 145 | 145 – 150 | 150 – 155 | 155 – 160 |
Number of students | 4 | 11 | 12 | 7 | 10 | 6 |
Find the median height of the students.
Read the following passage and answer the questions given below.
Electric buses are becoming popular nowadays. These buses have the electricity stored in a battery. Electric buses have a range of approximately 280 km with just charge. These buses are superior to diesel buses as they reduce brake wear and also reduce pollution. 'transport department of a city wants to buy some electric buses for the city. So, the department wants to know the distance travelled by existing public transport buses in a day. The following data shows the distance travelled by 50 existing public transport buses in a day. |
Daily distance travelled (in km) | 100 – 120 | 120 – 140 | 140 – 160 | 160 – 180 | 180 – 200 |
Number of buses | 12 | 14 | 8 | 6 | 10 |
- Find the 'median' distance travelled by a bus.
- Find the 'mean (average)' distance travelled by a bus.