Advertisements
Advertisements
प्रश्न
Find the median from the following data:
Class | 1 – 5 | 6 – 10 | 11 – 15 | 16 – 20 | 21 – 25 | 26 – 30 | 31 – 35 | 35 – 40 | 40 – 45 |
Frequency | 7 | 10 | 16 | 32 | 24 | 16 | 11 | 5 | 2 |
उत्तर
Converting into exclusive form, we get:
Class | Frequency (f) | Cumulative Frequency (cf) |
0.5 – 5.5 | 7 | 7 |
5.5 – 10.5 | 10 | 17 |
10.5 – 15.5 | 16 | 33 |
15.5 – 20.5 | 32 | 65 |
20.5 – 25.5 | 24 | 89 |
25.5 – 30.5 | 16 | 105 |
30.5 – 35.5 | 11 | 116 |
35.5 – 40.5 | 5 | 121 |
40.5 – 45.5 | 2 | 123 |
N = Σ𝑓 = 123 |
Now, N = 123
⇒` N/2` = 61.5.
The cumulative frequency just greater than 61.5 is 65 and the corresponding class is 15.5 – 20.5.
Thus, the median class is 15.5 – 20.5.
∴ l = 15.5, h = 5, f = 32, cf = c.f. of preceding class = 33 and `N/2` = 61.5.
∴ Median,` M = l + {h×((N/2−f)/f)}`
`= 15.5 + {5 × ((61.5 − 33)/32)}`
= 15.5 + 4.45
= 19.95
Hence, median = 19.95.
APPEARS IN
संबंधित प्रश्न
For a certain frequency distribution, the values of Assumed mean (A) = 1300, `sumf_id_i` = 900 and `sumfi` = 100. Find the value of mean (`barx`) .
Compute the median for the following data:
Marks | No. of students |
More than 150 | 0 |
More than 140 | 12 |
More than 130 | 27 |
More than 120 | 60 |
More than 110 | 105 |
More than 100 | 124 |
More than 90 | 141 |
More than 80 | 150 |
The marks obtained by 19 students of a class are given below:
27, 36, 22, 31, 25, 26, 33, 24, 37, 32, 29, 28, 36, 35, 27, 26, 32, 35 and 28.
Find:
- Median
- Lower quartile
- Upper quartile
- Inter-quartile range
The ages of 37 students in a class are given in the following table:
Age (in years) | 11 | 12 | 13 | 14 | 15 | 16 |
Frequency | 2 | 4 | 6 | 10 | 8 | 7 |
Which measure of central tendency can be determine graphically?
If the median of the data: 6, 7, x − 2, x, 17, 20, written in ascending order, is 16. Then x=
The median of set of 9 distinct observations is 20.5. If each of the largest 4 observations of the set is increased by 2, then the median of the new set ______.
Following is the distribution of the long jump competition in which 250 students participated. Find the median distance jumped by the students. Interpret the median
Distance (in m) |
0 – 1 | 1 – 2 | 2 – 3 | 3 – 4 | 4 – 5 |
Number of Students |
40 | 80 | 62 | 38 | 30 |
Calculate the median of marks of students for the following distribution:
Marks | Number of students |
More than or equal to 0 | 100 |
More than or equal to 10 | 93 |
More than or equal to 20 | 88 |
More than or equal to 30 | 70 |
More than or equal to 40 | 59 |
More than or equal to 50 | 42 |
More than or equal to 60 | 34 |
More than or equal to 70 | 20 |
More than or equal to 80 | 11 |
More than or equal to 90 | 4 |
Heights of 50 students of class X of a school are recorded and following data is obtained:
Height (in cm) | 130 – 135 | 135 – 140 | 140 – 145 | 145 – 150 | 150 – 155 | 155 – 160 |
Number of students | 4 | 11 | 12 | 7 | 10 | 6 |
Find the median height of the students.