Advertisements
Advertisements
प्रश्न
Calculate the standard enthalpy of combustion of methane if the standard enthalpy of formation of methane, carbon dioxide and water are −74.8, −393.5 and −285.8 kJmol−1 respectively.
उत्तर
Standard enthalpy of formation of methane
\[\ce{\Delta_fH^\circ(CH4)}\] = −74.8 kJ mol−1
\[\ce{\Delta_fH^\circ(CO2)}\] = −393.5 kJ mol−1
\[\ce{\Delta_fH^\circ(H2O)}\] = −285.8 kJ mol−1
To find:
Standard enthalpy of combustion of \[\ce{CH4}\] = ?
The equation for the combustion of \[\ce{CH4}\] is
\[\ce{CH4_{(g)} + 2O2_{(g)} -> CO2_{(g)} + 2H2O_{(l)}; \Delta_cH^\circ}\] = ?
\[\ce{\Delta_cH^\circ = [\Delta_fH^\circ(CO2) + 2\Delta_fH^\circ (H2O)] - [\Delta_fH^\circ](CH4) + 2\Delta_fH^\circ(O2)}\]
= [1 × (−393.5) + 2 × (−285.8)] − [1 × (−74.8) + 2 × 0]
= −965.1 + 74.8
= −890.3 k J
∴ Standard enthalpy of combustion of methane
\[\ce{\Delta_cH^\circ(CH4)}\] = −890.3 k J
APPEARS IN
संबंधित प्रश्न
Select the most appropriate option.
Which of the following reactions is exothermic?
Answer in brief.
How much heat is evolved when 12 g of CO reacts with NO2? The reaction is:
4CO(g) 2NO2(g) → 4CO2(g) + N2(g), ΔrH° = - 1200 kJ
The enthalpy change for the reaction, \[\ce{C2H4_{(g)} + H2_{(g)} -> C2H6_{(g)}}\] is −620 J when 100 mL of ethylene and 100 ml of \[\ce{H2}\] react at 1 bar pressure. Calculate the pressure volume type of work and ΔU for the reaction.
The standard enthalpy of formation of water is - 286 kJ mol-1. Calculate the enthalpy change for the formation of 0.018 kg of water.
Calculate enthalpy of formation of HCl if bond enthalpies of H2, Cl2 and HCl are 434 kJ mol-1, 242 kJ mol–1 and 431 kJ mol–1 respectively.
Calculate the standard enthalpy of combustion of CH4(g) if ΔfH°(CH4) = – 74.8 kJ mol–1, ΔfH°(CO2) = – 393.5 kJ mol–1 and ΔfH°(H2O) = – 285.8 kJ mol–1.
Define the Bond enthalpy.
Calculate the standard enthalpy of the reaction.
\[\ce{2Fe_{(s)} + \frac{3}{2} O_{2(g)} -> Fe2O_{3(s)}}\]
Given:
1. | \[\ce{2Al_{(s)} + Fe2O_{3(s)} -> 2Fe_{(s)} + Al_2O_{3(s)}}\], | ∆rH° = –847.6 kJ |
2. | \[\ce{2Al_{(s)} + \frac{3}{2} O_{2(g)} -> Al2O_{3(s)}}\], | ∆rH° = –1670 kJ |
When 2 moles of C2H6(g) are completely burnt, 3129 kJ of heat is liberated. If ∆Hf for CO2(g) and H2O(l) are −395 and −286 kJ per mole respectively, the heat combustion of C2H6(g) is ____________.
The volume of oxygen required for complete combustion of 0.25 mole of methane at STP is ______.
Which among the following salts, solubility decreases with increase in temperature?
Which of the following compounds is Not present in its standard state at 25°C and 1 atmosphere pressure?
Given the reaction,
\[\ce{CH2O_{(g)} + O2_{(g)} -> CO2_{(g)} + H2O_{(g)}}\] ΔH = −527 kJ
How much heat will be evolved in the formation of 60 g of CO2?
Calculate the enthalpy of hydrogenation of C2H4(g), given that the enthalpy of formation of ethane and ethylene are −30.2 kcal and +12.5 kcal respectively.
Combustion of glucose takes place as
\[\ce{C6H12O6_{(s)} + 6O2_{(g)} -> 6CO2_{(g)} + 6H2O_{(g)}}\]; ΔH = −72 kcal mol−1
The energy needed for the production of 1.8 g of glucose by photosynthesis will be ___________.
Heat of formation of water is - 272 kJ mol-1. What quantity of water is converted to H2 and O2 by 750 kJ of heat?
Standard entropies of N2(g), H2(g), and NH3(g) are a1, a2 and a3 J K-1 mol-1 respectively. What is value of ΔS° for formation of NH3(g)?
Calculate the standard enthalpy of formation of CH3OH(l) from the following data:
- \[\ce{CH3OH_{(l)} + 3/2 O2_{(g)} -> CO2_{(g)} + 2H2O_{(l)}ΔH^° = - 726 kJ mol^{-1}}\]
- \[\ce{C_{(s)} + O2_{(g)} → CO2_{(g)}Δ_cH^° = – 393 kJ mol^{-1}}\]
- \[\ce{H2_{(g)} + 1/2 O2_{(g)} -> H2O_{(l)}Δ_fH^° = - 286 kJ mol^{-1}}\]
From the following bond energies:
H – H bond energy: 431.37 kJ mol−1
C = C bond energy: 606.10 kJ mol−1
C – C bond energy: 336.49 kJ mol−1
C – H bond energy: 410.50 kJ mol−1
Enthalpy for the given reaction will be:
\[\begin{array}{cc}
\phantom{}\ce{H}\phantom{...}\ce{H}\phantom{...................}\ce{H}\phantom{...}\ce{H}\phantom{....}\\
\phantom{.}|\phantom{....}|\phantom{....................}|\phantom{....}|\phantom{.....}\\
\ce{C = C + H - H -> H - C - C - H}\\
\phantom{.}|\phantom{....}|\phantom{....................}|\phantom{....}|\phantom{.....}\\
\phantom{}\ce{H}\phantom{...}\ce{H}\phantom{...................}\ce{H}\phantom{...}\ce{H}\phantom{....}
\end{array}\]
\[\ce{A -> B}\], ∆H = −10 kJ mol−1, Ea(f) = 50 kJ mol−1, then Ea of \[\ce{B -> A}\] will be ______.
How many moles of helium gas occupies 22.4 Lat 0°c and at 1 atmospheric pressure?
What is enthalpy of formation of NH3 if bond enthalpies as (N ≡ N) = - 941 kJ/mol.
\[\ce{(H - H)}\] = 436 kJ/mol and \[\ce{(N - H)}\] = 389 kJ/mol?
When 0.5 gram of sulphur is burnt to form SO2, 4.6 kJ of heat liberated. Calculate enthalpy of formation of SO2(g). (Atomic mass : S = 32, O = 16)
Which of the following reactions defines the enthalpy of formation?
For the reaction, H2 + I2 ⇌ 2HI; ΔH = 12.4 kcal. The heat of formation of HI, ΔHf = ______.
Heat of combustion of CH4(g) is -890 kJ/mole. What is the value of Δc H of 8gm of methane?