Advertisements
Advertisements
प्रश्न
Choose the correct alternative:
If g(x) = (x2 + 2x + 1) f(x) and f(0) = 5 and `lim_(x -> 0) (f(x) - 5)/x` = 4, then g'(0) is
पर्याय
20
14
18
12
उत्तर
14
APPEARS IN
संबंधित प्रश्न
Find the derivatives of the following functions using first principle.
f(x) = 6
Find the derivatives of the following functions using first principle.
f(x) = – 4x + 7
Find the derivatives of the following functions using first principle.
f(x) = – x2 + 2
Find the derivatives from the left and from the right at x = 1 (if they exist) of the following functions. Are the functions differentiable at x = 1?
`f(x) = |x - 1|`
Determine whether the following function is differentiable at the indicated values.
f(x) = |x2 – 1| at x = 1
Determine whether the following function is differentiable at the indicated values.
f(x) = |x| + |x – 1| at x = 0, 1
The graph of f is shown below. State with reasons that x values (the numbers), at which f is not differentiable.
Examine the differentiability of functions in R by drawing the diagram
|sin x|
Examine the differentiability of functions in R by drawing the diagram
|cos x|
Choose the correct alternative:
f y = f(x2 + 2) and f'(3) = 5 , then `("d"y)/("d"x)` at x = 1 is
Choose the correct alternative:
If f(x) = x2 – 3x, then the points at which f(x) = f’(x) are
Choose the correct alternative:
If f(x) = x + 2, then f'(f(x)) at x = 4 is
Choose the correct alternative:
If pv = 81, then `"dp"/"dv"` at v = 9 is
Choose the correct alternative:
It is given that f'(a) exists, then `lim_(x -> "a") (xf("a") - "a"f(x))/(x - "a")` is