मराठी
तामिळनाडू बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान इयत्ता ११

Find the derivatives of the following functions using first principle. f(x) = – x2 + 2 - Mathematics

Advertisements
Advertisements

प्रश्न

Find the derivatives of the following functions using first principle.

f(x) = – x2 + 2

बेरीज

उत्तर

f(x + Δx) = – (x + Δx)2 + 2

f(x + Δx) – f(x) = – [x2 + 2x Δx + (Δx)2] + 2 – [– x2 + 2]

`(f(x + Deltax) - f(x))/(Deltax) = (- x^2 + 2xDeltax - (Deltax)^2 + 2 + x^2 - 2)/(Deltax)`

`(f(x + Deltax) - f(x))/(Deltax) = (- 2xDeltax - (Deltax)^2)/(Deltax)`

`(f(x + Deltax) - f(x))/(Deltax) = (-2xDeltax)/(Deltax) - (Deltax)^2/(Deltax)`

`(f(x + Deltax) - f(x))/(Deltax) = - 2x - Deltax`

`lim_(Deltax -> 0) (f(x + Deltax) - f(x))/(Deltax) = lim_(Deltax -> 0) (- 2x) - lim_(Deltax -> 0) Deltax`

`f"'"(x) = - 2x - 0`

`f"'"(x) = - 2x`

shaalaa.com
Differentiability and Continuity
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 10: Differential Calculus - Differentiability and Methods of Differentiation - Exercise 10.1 [पृष्ठ १४७]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 11 TN Board
पाठ 10 Differential Calculus - Differentiability and Methods of Differentiation
Exercise 10.1 | Q 1. (iii) | पृष्ठ १४७

संबंधित प्रश्‍न

Find the derivatives from the left and from the right at x = 1 (if they exist) of the following functions. Are the functions differentiable at x = 1?

`f(x) = {{:(x",", x ≤ 1),(x^2",", x > 1):}`


Determine whether the following function is differentiable at the indicated values.

f(x) = x |x| at x = 0


Determine whether the following function is differentiable at the indicated values.

f(x) = sin |x| at x = 0


The graph of f is shown below. State with reasons that x values (the numbers), at which f is not differentiable.


If f(x) = |x + 100| + x2, test whether f’(–100) exists.


Examine the differentiability of functions in R by drawing the diagram

|cos x|


Choose the correct alternative:

f y = f(x2 + 2) and f'(3) = 5 , then `("d"y)/("d"x)` at x = 1 is


Choose the correct alternative:

If f(x) = x2 – 3x, then the points at which f(x) = f’(x) are


Choose the correct alternative:

If y = mx + c and f(0) = f’(0) = 1, then f(2) is


Choose the correct alternative:

If f(x) = x + 2, then f'(f(x)) at x = 4 is


Choose the correct alternative:

If pv = 81, then `"dp"/"dv"` at v = 9 is


Choose the correct alternative:

It is given that f'(a) exists, then `lim_(x -> "a") (xf("a") - "a"f(x))/(x - "a")` is


Choose the correct alternative:

If f(x) = `{{:(x + 1,  "when"   x < 2),(2x - 1,  "when"  x ≥ 2):}` , then f'(2) is


Choose the correct alternative:

If g(x) = (x2 + 2x + 1) f(x) and f(0) = 5 and `lim_(x -> 0) (f(x) - 5)/x` = 4, then g'(0) is


Choose the correct alternative:

If f(x) = `{{:(x + 2, - 1 < x < 3),(5, x = 3),(8 - x, x > 3):}` , then at x = 3, f'(x) is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×