मराठी
तामिळनाडू बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान इयत्ता ११

If f(x) = |x + 100| + x2, test whether f’(-100) exists. - Mathematics

Advertisements
Advertisements

प्रश्न

If f(x) = |x + 100| + x2, test whether f’(–100) exists.

बेरीज

उत्तर

f(x) = |x + 100| + x2

First let us find the left limit of f(x) at x = – 100

When x < – 100 ,

f(x) = – (x + 100) + x2

f(– 100) = – (– 100 + 100) + (– 100)2

f(– 100) = 1002

`f"'"(- 100^-) =  lim_(x -> - 100^-) (f(x) - f(- 100))/(x - (- 100)`

= `lim_(x -> -10^-) (-(x + 100) + x^2 - 100^2)/(x + 100)`

= `lim_(x -> -100^-) [(-(x + 100))/(x + 100) + (x^2 - 100^2)/(x + 100)]`

= `lim_(x -> -100^-) [- 1 + ((x + 100)(x - 100))/(x + 100)]`

= `lim_(x -> -100^-) [- 1 + x - 100]`

= – 1 – 100 – 100

f'(– 100) = – 201  ........(1)

Next let us find the right limit of f(x) at x = – 100

when x > – 100

f(x) = x + 100 + x2

f(– 100) = – 100 + 100 + (– 100)2

f(– 100) = 1002 

`f"'"(- 100^+) =  lim_(x -> - 100^+) (f(x) - f(- 100))/(x - (- 100))`

= `lim_(x -> - 100^+) (x + 100 + x^2 - 100^2)/(x + 100)`

f'(– 100+) = – 199  ........(2)

From equation (1) and (2), we get

f’(– 100) ≠ f'(– 100+)

∴ f’(x) does not exist at x = – 100

Hence, f'(– 100) does not exist

shaalaa.com
Differentiability and Continuity
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 10: Differential Calculus - Differentiability and Methods of Differentiation - Exercise 10.1 [पृष्ठ १४७]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 11 TN Board
पाठ 10 Differential Calculus - Differentiability and Methods of Differentiation
Exercise 10.1 | Q 6 | पृष्ठ १४७

संबंधित प्रश्‍न

Find the derivatives of the following functions using first principle.

f(x) = 6


Determine whether the following function is differentiable at the indicated values.

f(x) = x |x| at x = 0


Determine whether the following function is differentiable at the indicated values.

f(x) = |x| + |x – 1| at x = 0, 1


Determine whether the following function is differentiable at the indicated values.

f(x) = sin |x| at x = 0


Show that the following functions are not differentiable at the indicated value of x.

`f(x) = {{:(-x + 2, x ≤ 2),(2x - 4, x > 2):}` , x = 2


Show that the following functions are not differentiable at the indicated value of x.

`f(x) = {{:(3x",", x < 0),(-4x",", x ≥ 0):}` , x = 0


The graph of f is shown below. State with reasons that x values (the numbers), at which f is not differentiable.


Choose the correct alternative:

f y = f(x2 + 2) and f'(3) = 5 , then `("d"y)/("d"x)` at x = 1 is


Choose the correct alternative:

If f(x) = x2 – 3x, then the points at which f(x) = f’(x) are


Choose the correct alternative:

If y = mx + c and f(0) = f’(0) = 1, then f(2) is


Choose the correct alternative:

If pv = 81, then `"dp"/"dv"` at v = 9 is


Choose the correct alternative:

It is given that f'(a) exists, then `lim_(x -> "a") (xf("a") - "a"f(x))/(x - "a")` is


Choose the correct alternative:

If f(x) = `{{:(x + 1,  "when"   x < 2),(2x - 1,  "when"  x ≥ 2):}` , then f'(2) is


Choose the correct alternative:

If g(x) = (x2 + 2x + 1) f(x) and f(0) = 5 and `lim_(x -> 0) (f(x) - 5)/x` = 4, then g'(0) is


Choose the correct alternative:

If f(x) = `{{:(x + 2, - 1 < x < 3),(5, x = 3),(8 - x, x > 3):}` , then at x = 3, f'(x) is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×