Advertisements
Advertisements
प्रश्न
Choose the most correct option.
The reaction, \[\ce{3ClO- -> ClO^-3 + 2Cl-}\] occurs in two steps,
(i) \[\ce{2ClO- -> ClO^-2}\]
(ii) \[\ce{ClO^-2 + ClO- -> ClO^-_3 + Cl-}\]
The reaction intermediate is _______.
पर्याय
`"Cl"^-`
`"ClO"_2^-`
`"ClO"_3^-`
`"ClO"^-`
उत्तर
The reaction, \[\ce{3ClO- -> ClO^-3 + 2Cl-}\] occurs in two steps,
(i) \[\ce{2ClO- -> ClO^-2}\]
(ii) \[\ce{ClO^-2 + ClO- -> ClO^-_3 + Cl-}\]
The reaction intermediate is `"ClO"_2^-`.
APPEARS IN
संबंधित प्रश्न
Choose the most correct option.
The rate constant for the reaction \[\ce{2N2O5_{(g)} -> 2N2O4_{(g)} + O2_{(g)}}\] is `4.98 xx 10^-4 "s"^-1`. The order of reaction is _____________.
Choose the most correct option.
Slope of the graph ln[A]t versus t for first-order reaction is _________.
Choose the most correct option.
Rate law for the reaction, \[\ce{2NO + Cl2 -> 2NOCl}\] is rate = k[NO2]2[Cl2]. Thus of k would increase with _____________.
Answer the following in brief.
For the reaction 2A + B → products, find the rate law from the following data.
[A]/M | [B]/M | rate/M s-1 |
0.3 | 0.05 | 0.15 |
0.6 | 0.05 | 0.30 |
0.6 | 0.2 | 1.20 |
A First order reaction is 50% complete in 69.3 minutes. Time required for 90% completion for the same reaction is _______.
Define order of reaction with suitable examples.
For the reaction 2A + B → C, rate of disappearance of A 0.076 mol s –1.
- What is the rate of formation of C?
- What is the rate of consumption of B?
- What is the rate of the overall reaction?
In a first-order reaction A → B, 60% of a given sample of a compound decomposes in 45 mins. What is the half-life of reaction? Also, write the rate law equation for the above first-order reaction.
In a hypothetical reaction,
\[\ce{2A + B -> Products}\]. Rate = k [A]2 [B]
Molar concentration of 'B' is kept constant and molar concentration of 'A' is tripled, then the rate of reaction will ____________.
For the non-stoichiometric reaction
\[\ce{2A + B -> C + D}\], the following kinetic data were obtained in three separate experiments, all at 298 K.
Initial concentration (A) |
Initial concentration (B) |
Initial rate of formation of C (mol dm−3 s−1) |
0.1 M | 0.1 M | 1.2 × 10−3 |
0.1 M | 0.2 M | 1.2 × 10−3 |
0.2 M | 0.1 M | 2.4 × 10−3 |
The rate law for the formation of C is:
The rate law for a reaction between the substances A and B is given by, rate = k[A]n [B]m. On halving the concentration of A and doubling the concentration of B, the ratio of the new rate to the earlier rate of the reaction will be as ____________.
Select the rate law that corresponds to the data shown for the following reaction:
Exp. | [A] mol dm−3 |
[B] mol dm−3 |
Initial Rate mol dm−3 |
1. | 0.012 | 0.035 | 0.10 |
2. | 0.024 | 0.070 | 0.80 |
3. | 0.024 | 0.035 | 0.10 |
4. | 0.012 | 0.070 | 0.80 |
The order of the reaction occurring by following mechanism should be:
(i) \[\ce{A2 + B2 -> AB2 + A (slow)}\]
(ii) \[\ce{A + B2 -> AB2 (fast)}\]
Consider the reaction \[\ce{2A + 2B -> C + 2D}\], if concentration of A is doubled at constant [B], rate increases by a factor 4. If concentration B is doubled at constant [A] the rate is doubled. Rate law of the reaction is ____________.
In the reaction \[\ce{A + B2 -> AB + B}\], the rate of reaction is directly proportional to the concentration of A and independent on the concentration of B2. What is the rate law expression?
The reaction \[\ce{A + B -> P}\], is second order in A and first order in B. What is the rate law for the reaction?
In the reaction \[\ce{2SO_{2_{(g)}} O_{2_{(g)}} -> 2SO_{3_{(g)}}}\], the rate of disappearance of SO2 is 1.28 × 10-5 M/s. What is the rate of appearance of SO3?
For the reaction \[\ce{2A + B -> 3C + D}\], which among the following is NOT the correct rate law expression?
Which of the following statement is not true for a reaction having rate law r = k[H2][I2]?
The correct order of raaii of F, F-, O and O2- is ______.
Write the rate law for the following reaction:
A reaction that is second order in NO and first order in Br2.
For the reaction A + B → P.
If [B] is doubled at constant [A], the rate of reaction doubled. If [A] is triple and [B] is doubled, the rate of reaction increases by a factor of 6. Calculate the rate law equation.