मराठी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान इयत्ता ११

Convince Yourself that Parts (A), (B) and (C) Figure Are Identical. Find the Capacitance Between the Points a and B of the Assembly. - Physics

Advertisements
Advertisements

प्रश्न

Convince yourself that parts (a), (b) and (c) figure are identical. Find the capacitance between the points A and B of the assembly.

बेरीज

उत्तर

Parts (a), (b) and (c) are identical, as all of them form a bridge circuit. In that circuit, capacitors of 1 µF and 2 µF are connected to terminal A and the 5 µF capacitor and capacitors of 3 µF and 6 µF are connected to terminal B and the 5 µF capacitor.

For the given situation, it can be observed that the bridge is in balance; thus, no current will flow through the 5 µF capacitor.

So to simplify the circuit, 5 µF capacitor can be removed from the circuit.

Now, 1 µF and 3 µF capacitors are in series.

And 2 µF and 6 µF capacitors are also in series combination.

These two combination are in parallel with each other.

The equivalent capacitance can be calculated as :-

`C_(eq) = (1 xx 3)/(1+3) + (2 xx 6)/(2+6)`

`= 3/4 + 12/8 = 9/4  "uF" = 2.25  "uF"`

`therefore = C_(eq) = 2.25  "uF"`

Thus , parts (a) , (b) and (c) are identical.

And,

`C_(eq) = 2.25  "uF"`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: Capacitors - Exercises [पृष्ठ १६७]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 2 [English] Class 11 and 12
पाठ 9 Capacitors
Exercises | Q 24 | पृष्ठ १६७

संबंधित प्रश्‍न

A capacitor of capacitance ‘C’ is charged to ‘V’ volts by a battery. After some time the battery is disconnected and the distance between the plates is doubled. Now a slab of dielectric constant, 1 < k < 2, is introduced to fill the space between the plates. How will the following be affected? (a) The electric field between the plates of the capacitor Justify your answer by writing the necessary expressions.


A capacitor of capacitance ‘C’ is charged to ‘V’ volts by a battery. After some time the battery is disconnected and the distance between the plates is doubled. Now a slab of dielectric constant, 1 < k < 2, is introduced to fill the space between the plates. How will the following be affected? (b) The energy stored in the capacitor Justify your answer by writing the necessary expressions


(i) Find equivalent capacitance between A and B in the combination given below. Each capacitor is of 2 µF capacitance.

(ii) If a dc source of 7 V is connected across AB, how much charge is drawn from the source and what is the energy stored in the network? 


A capacitor of unknown capacitance is connected across a battery of V volts. The charge stored in it is 360 μC. When potential across the capacitor is reduced by 120 V, the charge stored in it becomes 120 μC.

Calculate:

(i) The potential V and the unknown capacitance C.

(ii) What will be the charge stored in the capacitor, if the voltage applied had increased by 120 V?


A capacitor of unknown capacitance is connected across a battery of V volts. The charge stored in it is 300 μC. When potential across the capacitor is reduced by 100 V, the charge stored in it becomes 100 μC. Calculate The potential V and the unknown capacitance. What will be the charge stored in the capacitor if the voltage applied had increased by 100 V?


When 1⋅0 × 1012 electrons are transferred from one conductor to another, a potential difference of 10 V appears between the conductors. Calculate the capacitance of the two-conductor system.


Find the charges on the three capacitors connected to a battery as shown in figure.

Take `C_1 = 2.0  uF , C_2 = 4.0  uF , C_3 = 6.0  uF and V` = 12 volts.


Take `C_1 = 4.0  "uF" and C_2 = 6.0  "uF"` in figure . Calculate the equivalent capacitance of the combination between the points indicated.


Two conducting spheres of radii R1 and R2 are kept widely separated from each other. What are their individual capacitances? If the spheres are connected by a metal wire, what will be the capacitance of the combination? Think in terms of series−parallel connections.


Consider the situation shown in the figure. The switch S is open for a long time and then closed. (a) Find the charge flown through the battery when the switch S is closed. (b) Find the work done by the battery.(c) Find the change in energy stored in the capacitors.(d) Find the heat developed in the system.


If the voltage applied on a capacitor is increased from V to 2V, choose the correct conclusion.


The positive terminal of 12 V battery is connected to the ground. Then the negative terminal will be at ______.


When air is replaced by a dielectric medium of constant K, the maximum force of attraction between two charges separated by a distance ______.


The capacitance of a parallel plate capacitor is 60 µF. If the distance between the plates is tripled and area doubled then new capacitance will be ______.


The displacement current of 4.425 µA is developed in the space between the plates of the parallel plate capacitor when voltage is changing at a rate of 106 Vs-1. The area of each plate of the capacitor is 40 cm2. The distance between each plate of the capacitor is x × 10-3 m. The value of x is ______.

(Permittivity of free space, ε0 = 8.85 × 10-12C2N-1m-2).


Two plates A and B of a parallel plate capacitor are arranged in such a way, that the area of each plate is S = 5 × 10-3 m 2 and distance between them is d = 8.85 mm. Plate A has a positive charge q1 = 10-10 C and Plate B has charge q2 = + 2 × 10-10 C. Then the charge induced on the plate B due to the plate A be - (....... × 10-11 )C


A leaky parallel plate capacitor is filled completely with a material having dielectric constant K = 5 and electric conductivity σ = 7.4 × 10-12 Ω-1 m-1. If the charge on the plate at the instant t = 0 is q = 8.85 µC, then the leakage current at the instant t = 12 s is ______ × 10-1 µA.


A capacitor has charge 50 µC. When the gap between the plate is filled with glass wool, then 120 µC charge flows through the battery to capacitor. The dielectric constant of glass wool is ______.


Current versus time and voltage versus time graphs of a circuit element are shown in figure.

The type of the circuit element is ______.


Calculate equivalent capacitance of the circuit shown in the Figure given below:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×