Advertisements
Advertisements
प्रश्न
`(cos^2theta)/(sintheta) + sintheta` = cosec θ हे सिद्ध करा.
उत्तर
डावी बाजू = `(cos^2theta)/(sintheta) + sintheta`
= `(cos^2theta + sin^2theta)/sintheta`
= `1/sintheta` .......[∵ sin2θ + cos2θ = 1]
= cosec θ
= उजवी बाजू
∴ `(cos^2theta)/(sintheta) + sintheta` = cosec θ
APPEARS IN
संबंधित प्रश्न
cot θ + tan θ = cosec θ sec θ
sec4A(1 - sin4A) - 2tan2A = 1
1 + tan2θ = किती?
(sec θ + tan θ) (1 - sin θ) = cos θ
जर 3 sin θ = 4 cos θ, तर sec θ = ?
`"tan A"/"cot A" = (sec^2"A")/("cosec"^2"A")` हे सिद्ध करा.
cot θ + tan θ = cosec θ × sec θ, हे सिद्ध करण्यासाठी खालील कृती पूर्ण करा.
कृती:
डावी बाजू = `square`
= `square/sintheta + sintheta/costheta`
= `(cos^2theta + sin^2theta)/square`
= `1/(sintheta*costheta)` ......`[cos^2theta + sin^2theta = square]`
= `1/sintheta xx 1/square`
= `square`
= उजवी बाजू
`(sintheta + "cosec" theta)/sin theta` = 2 + cot2θ हे सिद्ध करा.
दाखवा की: `tanA/(1 + tan^2 A)^2 + cotA/(1 + cot^2A)^2` = sinA × cosA.
सिद्ध करा:
cotθ + tanθ = cosecθ × secθ
उकल:
डावी बाजू = cotθ + tanθ
= `cosθ/sinθ + sinθ/cosθ`
= `(square + square)/(sinθ xx cosθ)`
= `1/(sinθ xx cosθ)` ............... `square`
= `1/sinθ xx 1/square`
= cosecθ × secθ
= उजवी बाजू
∴ cotθ + tanθ = cosecθ × secθ