Advertisements
Advertisements
प्रश्न
`(sintheta + "cosec" theta)/sin theta` = 2 + cot2θ हे सिद्ध करा.
उत्तर
डावी बाजू = `(sintheta + "cosec" theta)/sin theta`
= `sintheta/sintheta + ("cosec"theta)/sintheta`
= 1 + cosec θ × cosec θ ......`[∵ "cosec" theta = 1/sin theta]`
= 1 + cosec2θ
= 1 + 1 + cot2θ .......[∵ 1 + cot2θ = cosec2θ]
= 2 + cot2θ
= उजवी बाजू
∴ `(sintheta + "cosec" theta)/sin theta` = 2 + cot2θ
APPEARS IN
संबंधित प्रश्न
`tanA/(1 + tan^2A)^2 + cotA/(1 + cot^2A)^2` = sin A cos A
जर secθ = `13/12` , तर इतर त्रिकोणमितीय गुणोत्तरांच्या किमती काढा.
tan4θ + tan2θ = sec4θ - sec2θ
`(sin θ - cos θ + 1)/(sin θ + cos θ - 1) = 1/(sec θ - tan θ)`
खालील प्रश्नासाठी उत्तराचा योग्य पर्याय निवडा.
खालीलपैकी चुकीचे सूत्र कोणते?
sec2θ − cos2θ = tan2θ + sin2θ हे सिद्ध करा.
`(cos^2theta)/(sintheta) + sintheta` = cosec θ हे सिद्ध करा.
tan2θ – sin2θ = tan2θ × sin2θ हे सिद्ध करण्यासाठी खालील कृती पूर्ण करा.
कृती: डावी बाजू = `square`
= `square (1 - (sin^2theta)/(tan^2theta))`
= `tan^2theta (1 - square/((sin^2theta)/(cos^2theta)))`
= `tan^2theta (1 - (sin^2theta)/1 xx (cos^2theta)/square)`
= `tan^2theta (1 - square)`
= `tan^2theta xx square` .....[1 – cos2θ = sin2θ]
= उजवी बाजू
`(1 + sec "A")/"sec A" = (sin^2"A")/(1 - cos"A")` हे सिद्ध करा.
sec2A – cosec2A = `(2sin^2"A" - 1)/(sin^2"A"*cos^2"A")` हे सिद्ध करा.