Advertisements
Advertisements
प्रश्न
sec2A – cosec2A = `(2sin^2"A" - 1)/(sin^2"A"*cos^2"A")` हे सिद्ध करा.
उत्तर
डावी बाजू = sec2A – cosec2A
= `1/(cos^2"A") - 1/(sin^2"A")`
= `(sin^2"A" - cos^2"A")/(cos^2"A"*sin^2"A")`
= `(sin^2"A" - (1 - sin^2"A"))/(sin^2"A"*cos^2"A")` .....`[(because sin^2"A" + cos^2"A" = 1),(therefore 1 sin^2"A" = cos^2"A")]`
= `(sin^2"A" - 1 + sin^2"A")/(sin^2"A"*cos^2"A")`
= `(2sin^2"A" - 1)/(sin^2"A"*cos^2"A")`
= उजवी बाजू
∴ sec2A – cosec2A = `(2sin^2"A" - 1)/(sin^2"A"*cos^2"A")`
APPEARS IN
संबंधित प्रश्न
secθ + tanθ = `cosθ/(1 - sinθ)`
जर tanθ = 2, तर इतर त्रिकोणमितीय गुणोत्तरांच्या किमती काढा
sec θ(1 - sin θ) (sec θ + tan θ) = 1
`(tan^3θ - 1)/(tanθ - 1)` = sec2θ + tanθ
sin4A – cos4A = 1 – 2cos2A हे सिद्ध करण्यासाठी खालील कृती पूर्ण करा.
कृती: डावी बाजू = `square`
= (sin2A + cos2A) `(square)`
= `1 (square)` .....`[sin^2"A" + square = 1]`
= `square` – cos2A .....[sin2A = 1 – cos2A]
= `square`
= उजवी बाजू
जर tan θ = `7/24`, तर cos θ ची किंमत काढण्यासाठी खालील कृती पूर्ण करा.
कृती: sec2θ = 1 + `square` ......[त्रि. नित्य समीकरण]
sec2θ = 1 + `square^2`
sec2θ = 1 + `square/576`
sec2θ = `square/576`
sec θ = `square`
cos θ = `square` .......`[cos theta = 1/sectheta]`
`"cot A"/(1 - tan "A") + "tan A"/(1 - cot"A")` = 1 + tan A + cot A = sec A . cosec A + 1 हे सिद्ध करा.
जर cos A + cos2A = 1, तर sin2A + sin4A = ?
cotθ + tanθ = cosecθ × secθ हे सिद्ध करण्यासाठी खालील कृती पूर्ण करा.
कृती:
डावी बाजू = cotθ + tanθ
= `costheta/sintheta + square/costheta`
= `(square + sin^2theta)/(sintheta xx costheta)`
= `1/(sintheta xx costheta)` ......`because square`
= `1/sintheta xx 1/costheta`
= `square xx sectheta`
डावी बाजू = उजवी बाजू
θ चे निरसन करा:
जर x = r cosθ आणि y = r sinθ