Advertisements
Advertisements
प्रश्न
sec θ(1 - sin θ) (sec θ + tan θ) = 1
उत्तर
डावी बाजू = sec θ(1 - sin θ) (sec θ + tan θ)
= `1/cos θ(1 - sin θ)(1/cos θ + sin θ/cos θ)`
= `(1 - sin θ)/cos θ((1 + sin θ)/cos θ)`
= `(1 - sin^2θ)/(cos^2θ)`
= `(cos^2θ)/(cos^2θ)` ..........`[(∵ sin^2θ + cos^2θ = 1), (∴ 1 - sin^2θ = cos^2θ)]`
= 1
= उजवी बाजू
∴ sec θ(1 - sin θ) (sec θ + tan θ) = 1
APPEARS IN
संबंधित प्रश्न
(sec θ - cos θ)(cot θ + tan θ) = tan θ sec θ
जर tanθ + `1/tanθ` = 2 तर दाखवा की `tan^2θ + 1/tan^2θ` = 2
sec6x - tan6x = 1 + 3sec2x × tan2x
`(sin θ - cos θ + 1)/(sin θ + cos θ - 1) = 1/(sec θ - tan θ)`
cot θ + tan θ = cosec θ × sec θ, हे सिद्ध करण्यासाठी खालील कृती पूर्ण करा.
कृती:
डावी बाजू = `square`
= `square/sintheta + sintheta/costheta`
= `(cos^2theta + sin^2theta)/square`
= `1/(sintheta*costheta)` ......`[cos^2theta + sin^2theta = square]`
= `1/sintheta xx 1/square`
= `square`
= उजवी बाजू
`sqrt((1 + cos "A")/(1 - cos"A"))` = cosec A + cot A हे सिद्ध करा.
जर sin θ + cos θ = `sqrt(3)`, तर tan θ + cot θ = 1 हे दाखवा.
दाखवा की: `tanA/(1 + tan^2 A)^2 + cotA/(1 + cot^2A)^2` = sinA × cosA.
θ चे निरसन करा:
जर x = r cosθ आणि y = r sinθ
जर `1/sin^2θ - 1/cos^2θ-1/tan^2θ-1/cot^2θ-1/sec^2θ-1/("cosec"^2θ) = -3`, तर θ ची किमत काढा.