Advertisements
Advertisements
प्रश्न
जर sin θ + cos θ = `sqrt(3)`, तर tan θ + cot θ = 1 हे दाखवा.
उत्तर
sin θ + cos θ = `sqrt(3)` ......[दिलेले]
∴ (sin θ + cos θ)2 = 3 ......[दोन्ही बाजूंचे वर्ग करून]
∴ sin2θ + 2sinθ cosθ + cos2θ = 3 ......[∵ (a + b)2 = a2 + 2ab + b2]
∴ (sin2θ + cos2θ) + 2sinθ cosθ = 3
∴ 1 + 2 sin θ cos θ = 3 ......[∵ sin2θ + cos2θ = 1]
∴ 2 sin θ cos θ = 2
∴ sin θ cos θ = 1 ......(i)
tan θ + cot θ = `sintheta/costheta + costheta/sintheta`
= `(sin^2theta + cos^2theta)/(costhetasintheta)`
= `1/(sintheta costheta)` ......[∵ sin2θ + cos2θ = 1]
= `1/1` ......[(i) वरून]
= 1
APPEARS IN
संबंधित प्रश्न
sec4θ - cos4θ = 1 - 2cos2θ
`tanθ/(secθ - 1) = (tanθ + secθ + 1)/(tanθ + secθ - 1)`
sinθ × cosecθ = किती?
खालील प्रश्नासाठी उत्तराचा योग्य पर्याय निवडा.
`(1 + cot^2"A")/(1 + tan^2"A")` = ?
cos2θ . (1 + tan2θ) = 1 हे सिद्ध करण्यासाठी खालील कृती पूर्ण करा.
कृती: डावी बाजू = `square`
= `cos^2theta xx square` .........`[1 + tan^2theta = square]`
= `(cos theta xx square)^2`
= 12
= 1
= उजवी बाजू
tan2θ – sin2θ = tan2θ × sin2θ हे सिद्ध करण्यासाठी खालील कृती पूर्ण करा.
कृती: डावी बाजू = `square`
= `square (1 - (sin^2theta)/(tan^2theta))`
= `tan^2theta (1 - square/((sin^2theta)/(cos^2theta)))`
= `tan^2theta (1 - (sin^2theta)/1 xx (cos^2theta)/square)`
= `tan^2theta (1 - square)`
= `tan^2theta xx square` .....[1 – cos2θ = sin2θ]
= उजवी बाजू
`(1 + sintheta)/(1 - sin theta)` = (sec θ + tan θ)2 हे सिद्ध करा.
`sqrt((1 + cos "A")/(1 - cos"A"))` = cosec A + cot A हे सिद्ध करा.
cotθ + tanθ = cosecθ × secθ हे सिद्ध करण्यासाठी खालील कृती पूर्ण करा.
कृती:
डावी बाजू = cotθ + tanθ
= `costheta/sintheta + square/costheta`
= `(square + sin^2theta)/(sintheta xx costheta)`
= `1/(sintheta xx costheta)` ......`because square`
= `1/sintheta xx 1/costheta`
= `square xx sectheta`
डावी बाजू = उजवी बाजू
जर `1/sin^2θ - 1/cos^2θ-1/tan^2θ-1/cot^2θ-1/sec^2θ-1/("cosec"^2θ) = -3`, तर θ ची किमत काढा.