Advertisements
Advertisements
प्रश्न
cos2θ . (1 + tan2θ) = 1 हे सिद्ध करण्यासाठी खालील कृती पूर्ण करा.
कृती: डावी बाजू = `square`
= `cos^2theta xx square` .........`[1 + tan^2theta = square]`
= `(cos theta xx square)^2`
= 12
= 1
= उजवी बाजू
उत्तर
डावी बाजू = `underline(cos^2theta*(1 + tan^2theta))`
= `cos^2theta xx underline(sec^2theta)` .....`[1 + tan^2theta = underline(sec^2theta)]`
= `(cos theta xx underline(sectheta))^2`
= 12
= 1
= उजवी बाजू
APPEARS IN
संबंधित प्रश्न
cos2θ(1 + tan2θ) = 1
sec4θ - cos4θ = 1 - 2cos2θ
जर tanθ + `1/tanθ` = 2 तर दाखवा की `tan^2θ + 1/tan^2θ` = 2
cot2θ × sec2θ = cot2θ + 1 हे सिद्ध करा.
जर sec θ = `41/40`, तर sin θ, cot θ, cosec θ च्या किमती काढा.
`sec"A"/(tan "A" + cot "A")` = sin A हे सिद्ध करा.
sin4A – cos4A = 1 – 2cos2A हे सिद्ध करा.
sin θ (1 – tan θ) – cos θ (1 – cot θ) = cosec θ – sec θ हे सिद्ध करा.
जर cosec A – sin A = p आणि sec A – cos A = q, तर सिद्ध करा. `("p"^2"q")^(2/3) + ("pq"^2)^(2/3)` = 1
जर tan θ – sin2θ = cos2θ, तर sin2θ = `1/2` हे दाखवा.