Advertisements
Advertisements
प्रश्न
sec4θ - cos4θ = 1 - 2cos2θ
उत्तर
डावी बाजू = sec4θ - cos4θ
= (sec2θ)2 – (cos2θ)2
= (sec2θ + cos2θ) (sec2θ – cos2θ) ....[∵ a2 – b2 = (a + b)(a – b)]
`= ((1 + cos^4 theta)(1- cos^4 theta))/(cos^4 theta)`
= `(1 + cos^4 theta)(1- cos^4 theta) (1 + cos^2 theta)/cos^4 theta`
Thus the solution would be not coming equal to RHS.
The correct question would be sin4 θ in place of sec4θ.
On solving this question we get,
= (sin2θ)2 – (cos2θ)2
= (sin2θ + cos2θ) (sin2θ – cos2θ) ....[∵ a2 – b2 = (a + b)(a – b)]
= (1) (sin2θ – cos2θ) ....[∵ sin2θ + cos2θ = 1]
= sin2θ – cos2θ
= (1 - cos2θ) - cos2θ ....[∵ sin2θ = 1 - cos2θ]
= 1 - 2cos2θ = उजवी बाजू
∴ sin4 θ - cos4θ = 1 - 2 cos2θ
APPEARS IN
संबंधित प्रश्न
`1/(secθ - tanθ)` = secθ + tanθ
(sec θ + tan θ) (1 - sin θ) = cos θ
जर 3 sin θ = 4 cos θ, तर sec θ = ?
`(tan(90 - theta) + cot(90 - theta))/("cosec" theta)` = sec θ हे सिद्ध करा.
`sec"A"/(tan "A" + cot "A")` = sin A हे सिद्ध करा.
जर cos A = `(2sqrt("m"))/("m" + 1)`, असेल, तर सिद्ध करा cosec A = `("m" + 1)/("m" - 1)`
2(sin6A + cos6A) – 3(sin4A + cos4A) + 1 = 0 हे सिद्ध करा.
जर cos A + cos2A = 1, तर sin2A + sin4A = ?
जर tan θ – sin2θ = cos2θ, तर sin2θ = `1/2` हे दाखवा.
सिद्ध करा:
cotθ + tanθ = cosecθ × secθ
उकल:
डावी बाजू = cotθ + tanθ
= `cosθ/sinθ + sinθ/cosθ`
= `(square + square)/(sinθ xx cosθ)`
= `1/(sinθ xx cosθ)` ............... `square`
= `1/sinθ xx 1/square`
= cosecθ × secθ
= उजवी बाजू
∴ cotθ + tanθ = cosecθ × secθ