Advertisements
Advertisements
प्रश्न
`1/(secθ - tanθ)` = secθ + tanθ
उत्तर
डावी बाजू = `1/(secθ - tanθ)`
= `1/(secθ - tanθ) xx (secθ + tanθ)/(secθ + tanθ)` ......[छेदाचे परिमेयकरण करून]
= `(secθ + tanθ)/(sec^2θ - tan^2θ)`
= `(secθ + tanθ)/1` ....`[(∵ 1 + tan^2θ = sec^2θ),(∴ sec^2θ - tan^2θ = 1)]`
= secθ + tanθ
= उजवी बाजू
∴ `1/(secθ - tanθ)` = secθ + tanθ
APPEARS IN
संबंधित प्रश्न
`sqrt((1 - sinθ)/(1 + sinθ))` = secθ - tanθ
secθ + tanθ = `cosθ/(1 - sinθ)`
sec4A(1 - sin4A) - 2tan2A = 1
sinθ × cosecθ = किती?
1 + tan2θ = किती?
जर tan θ + cot θ = 2, तर tan2θ + cot2θ = ?
`sintheta/(sectheta+ 1) +sintheta/(sectheta - 1)` = 2 cot θ हे सिद्ध करा.
sec2A – cosec2A = `(2sin^2"A" - 1)/(sin^2"A"*cos^2"A")` हे सिद्ध करा.
cotθ + tanθ = cosecθ × secθ हे सिद्ध करण्यासाठी खालील कृती पूर्ण करा.
कृती:
डावी बाजू = cotθ + tanθ
= `costheta/sintheta + square/costheta`
= `(square + sin^2theta)/(sintheta xx costheta)`
= `1/(sintheta xx costheta)` ......`because square`
= `1/sintheta xx 1/costheta`
= `square xx sectheta`
डावी बाजू = उजवी बाजू
सिद्ध करा:
cotθ + tanθ = cosecθ × secθ
उकल:
डावी बाजू = cotθ + tanθ
= `cosθ/sinθ + sinθ/cosθ`
= `(square + square)/(sinθ xx cosθ)`
= `1/(sinθ xx cosθ)` ............... `square`
= `1/sinθ xx 1/square`
= cosecθ × secθ
= उजवी बाजू
∴ cotθ + tanθ = cosecθ × secθ