Advertisements
Advertisements
प्रश्न
`sintheta/(sectheta+ 1) +sintheta/(sectheta - 1)` = 2 cot θ हे सिद्ध करा.
उत्तर
डावी बाजू = `sintheta/(sectheta+ 1) +sintheta/(sectheta - 1)`
= `sintheta/(1/costheta + 1) + sintheta/(1/costheta - 1`
= `sintheta/((1 + costheta)/costheta) + sintheta/((1 - costheta)/(costheta))`
= `(sintheta costheta)/(1 + costheta) + (sintheta costheta)/(1 - costheta)`
= `sin theta costheta (1 /(1 + costheta) + 1/(1 - costheta))`
= `sintheta costheta [(1 - costheta + 1 + costheta)/((1 + costheta)(1 - costheta))]`
= `sintheta costheta (2/(1 - cos^2theta))` ......[∵ (a + b)(a – b) = a2 – b2]
= `sintheta costheta xx 2/(sin^2theta)` .....`[(because sin^2theta + cos^2theta = 1),(therefore 1 - cos^2theta = sin^2theta)]`
= `2 xx (costheta)/(sintheta)`
= 2cot θ
= उजवी बाजू
∴ `sintheta/(sectheta+ 1) +sintheta/(sectheta - 1)` = 2 cot θ
APPEARS IN
संबंधित प्रश्न
`sqrt((1 - sinθ)/(1 + sinθ))` = secθ - tanθ
sec4A(1 - sin4A) - 2tan2A = 1
sinθ × cosecθ = किती?
जर secθ = `13/12` , तर इतर त्रिकोणमितीय गुणोत्तरांच्या किमती काढा.
cot2θ - tan2θ = cosec2θ - sec2θ
जर 1 – cos2θ = `1/4`, तर θ = ?
(sec θ + tan θ) . (sec θ – tan θ) = ?
जर 3 sin θ = 4 cos θ, तर sec θ = ?
जर tan θ = `7/24`, तर cos θ ची किंमत काढण्यासाठी खालील कृती पूर्ण करा.
कृती: sec2θ = 1 + `square` ......[त्रि. नित्य समीकरण]
sec2θ = 1 + `square^2`
sec2θ = 1 + `square/576`
sec2θ = `square/576`
sec θ = `square`
cos θ = `square` .......`[cos theta = 1/sectheta]`
`(1 + sin "B")/"cos B" + "cos B"/(1 + sin "B")` = 2 sec B हे सिद्ध करा.