Advertisements
Advertisements
प्रश्न
(sec θ + tan θ) . (sec θ – tan θ) = ?
उत्तर
(sec θ + tan θ)(sec θ – tan θ)
= sec2θ – tan2θ ......[(a + b)(a – b) = a2 – b2]
= 1 ......`[(because 1 + tan^2theta = sec^2theta),(therefore sec^2theta - tan^2theta = 1)]`
APPEARS IN
संबंधित प्रश्न
जर tanθ = 2, तर इतर त्रिकोणमितीय गुणोत्तरांच्या किमती काढा
जर secθ = `13/12` , तर इतर त्रिकोणमितीय गुणोत्तरांच्या किमती काढा.
खालील प्रश्नासाठी उत्तराचा योग्य पर्याय निवडा.
खालीलपैकी चुकीचे सूत्र कोणते?
cos2θ . (1 + tan2θ) = 1 हे सिद्ध करण्यासाठी खालील कृती पूर्ण करा.
कृती: डावी बाजू = `square`
= `cos^2theta xx square` .........`[1 + tan^2theta = square]`
= `(cos theta xx square)^2`
= 12
= 1
= उजवी बाजू
`(sin^2theta)/(cos theta) + cos theta` = sec θ हे सिद्ध करा.
`(cos^2theta)/(sintheta) + sintheta` = cosec θ हे सिद्ध करा.
`(cot "A" + "cosec A" - 1)/(cot"A" - "cosec A" + 1) = (1 + cos "A")/"sin A"` हे सिद्ध करा.
जर cos A + cos2A = 1, तर sin2A + sin4A = ?
जर cosec A – sin A = p आणि sec A – cos A = q, तर सिद्ध करा. `("p"^2"q")^(2/3) + ("pq"^2)^(2/3)` = 1
जर sin θ + cos θ = `sqrt(3)`, तर tan θ + cot θ = 1 हे दाखवा.