Advertisements
Advertisements
प्रश्न
जर cosec A – sin A = p आणि sec A – cos A = q, तर सिद्ध करा. `("p"^2"q")^(2/3) + ("pq"^2)^(2/3)` = 1
उत्तर
cosec A – sin A = p ......[दिलेले]
∴ `1/"sin A" - sin "A"` = p
∴ `(1 - sin^2"A")/"sin A"` = p
∴ `(cos^2"A")/"sin A"` = p ......`("i") [(because sin^2"A" + cos^2"A" = 1),(therefore 1 - sin^2"A" = cos^2"A")]`
sec A – cos A = q ......[दिलेले]
∴ `1/"cos A" - cos "A"` = q
∴ `(1 - cos^2"A")/"cos A"` = q
∴ `(sin^2"A")/"cos A"` = q .....(ii) `[(because sin^2"A" + cos^2"A" = 1),(therefore 1 - cos^2"A" = sin^2"A")]`
डावी बाजू = `("p"^2"q")^(2/3) + ("pq"^2)^(2/3)`
= `[((cos^2"A")/(sin "A"))^2 ((sin^2"A")/(cos"A"))]^(2/3) + [((cos^2"A")/(sin "A"))((sin^2"A")/(cos"A"))^2]^(2/3)` ......[(i) आणि (ii) वरून]
= `((cos^4"A")/(sin^2"A") xx (sin^2"A")/(cos"A"))^(2/3) + ((cos^2"A")/(sin"A") xx (sin^4"A")/(cos^2"A"))^(2/3)`
= `(cos^3"A")^(2/3) + (sin^3"A")^(2/3)`
= cos2A + sin2A
= 1
= उजवी बाजू
∴ `("p"^2"q")^(2/3) + ("pq"^2)^(2/3)` = 1
APPEARS IN
संबंधित प्रश्न
`tanA/(1 + tan^2A)^2 + cotA/(1 + cot^2A)^2` = sin A cos A
sec2θ + cosec2θ = sec2θ × cosec2θ
tan4θ + tan2θ = sec4θ - sec2θ
cosec θ.`sqrt(1 - cos^2theta) = 1` हे सिद्ध करा.
cos2θ . (1 + tan2θ) = 1 हे सिद्ध करण्यासाठी खालील कृती पूर्ण करा.
कृती: डावी बाजू = `square`
= `cos^2theta xx square` .........`[1 + tan^2theta = square]`
= `(cos theta xx square)^2`
= 12
= 1
= उजवी बाजू
sec2θ + cosec2θ = sec2θ × cosec2θ हे सिद्ध करा.
tan2θ – sin2θ = tan2θ × sin2θ हे सिद्ध करण्यासाठी खालील कृती पूर्ण करा.
कृती: डावी बाजू = `square`
= `square (1 - (sin^2theta)/(tan^2theta))`
= `tan^2theta (1 - square/((sin^2theta)/(cos^2theta)))`
= `tan^2theta (1 - (sin^2theta)/1 xx (cos^2theta)/square)`
= `tan^2theta (1 - square)`
= `tan^2theta xx square` .....[1 – cos2θ = sin2θ]
= उजवी बाजू
`(cot "A" + "cosec A" - 1)/(cot"A" - "cosec A" + 1) = (1 + cos "A")/"sin A"` हे सिद्ध करा.
जर cos A = `(2sqrt("m"))/("m" + 1)`, असेल, तर सिद्ध करा cosec A = `("m" + 1)/("m" - 1)`
जर cos A + cos2A = 1, तर sin2A + sin4A = ?