Advertisements
Advertisements
प्रश्न
cosec θ.`sqrt(1 - cos^2theta) = 1` हे सिद्ध करा.
उत्तर
डावी बाजू = `"cosec" θ xx sqrt(1 - cos^2theta)`
= `"cosec" θ xx sqrt(sin^2theta)` ......`[(because sin^2theta + cos^2theta = 1),(therefore 1 - cos^2theta = sin^2theta)]`
= cosec θ × sin θ
= 1 ......[∵ sin θ × cosec θ = 1]
= उजवी बाजू
APPEARS IN
संबंधित प्रश्न
cos2θ(1 + tan2θ) = 1
cot θ + tan θ = cosec θ sec θ
जर sinθ = `11/61`, तर नित्यसमानतेचा उपयोग करून cosθ ची किंमत काढा.
(sec θ + tan θ) . (sec θ – tan θ) = ?
जर sec θ + tan θ = `sqrt(3)`, तर secθ – tanθ ची किंमत काढण्यासाठी खालील कृती पूर्ण करा.
कृती: `square` = 1 + tan2θ ......[त्रि. नित्य समीकरण]
`square` – tan2θ = 1
(sec θ + tan θ) . (sec θ – tan θ) = `square`
`sqrt(3)*(sectheta - tan theta)` = 1
(sec θ – tan θ) = `square`
जर tan θ = `7/24`, तर cos θ ची किंमत काढण्यासाठी खालील कृती पूर्ण करा.
कृती: sec2θ = 1 + `square` ......[त्रि. नित्य समीकरण]
sec2θ = 1 + `square^2`
sec2θ = 1 + `square/576`
sec2θ = `square/576`
sec θ = `square`
cos θ = `square` .......`[cos theta = 1/sectheta]`
`sintheta/(sectheta+ 1) +sintheta/(sectheta - 1)` = 2 cot θ हे सिद्ध करा.
sin2A . tan A + cos2A . cot A + 2 sin A . cos A = tan A + cot A हे सिद्ध करा.
2(sin6A + cos6A) – 3(sin4A + cos4A) + 1 = 0 हे सिद्ध करा.
(1 – cos2A) . sec2B + tan2B (1 – sin2A) = sin2A + tan2B हे सिद्ध करा.