Advertisements
Advertisements
प्रश्न
जर tan θ = `7/24`, तर cos θ ची किंमत काढण्यासाठी खालील कृती पूर्ण करा.
कृती: sec2θ = 1 + `square` ......[त्रि. नित्य समीकरण]
sec2θ = 1 + `square^2`
sec2θ = 1 + `square/576`
sec2θ = `square/576`
sec θ = `square`
cos θ = `square` .......`[cos theta = 1/sectheta]`
उत्तर
sec2θ = 1 + tan2θ ......[त्रि. नित्य समीकरण]
∴ sec2θ = 1 + `underline((7/24))^2`
∴ sec2θ = 1 + `underline(49)/576`
∴ sec2θ =`(576 + 49)/576`
∴ sec2θ = `underline(625)/576`
∴ sec θ = `underline(25/24)`
∴ cos θ = `underline(24/25)` .......`[cos theta = 1/sectheta]`
APPEARS IN
संबंधित प्रश्न
(sec θ - cos θ)(cot θ + tan θ) = tan θ sec θ
`1/(secθ - tanθ)` = secθ + tanθ
`tanA/(1 + tan^2A)^2 + cotA/(1 + cot^2A)^2` = sin A cos A
खालील प्रश्नासाठी उत्तराचा योग्य पर्याय निवडा.
`(1 + cot^2"A")/(1 + tan^2"A")` = ?
`(sin^2theta)/(cos theta) + cos theta` = sec θ हे सिद्ध करा.
जर tan θ + cot θ = 2, तर tan2θ + cot2θ = ?
sec2θ + cosec2θ = sec2θ × cosec2θ हे सिद्ध करा.
sec2θ − cos2θ = tan2θ + sin2θ हे सिद्ध करा.
`"tan A"/"cot A" = (sec^2"A")/("cosec"^2"A")` हे सिद्ध करा.
`(sintheta + "cosec" theta)/sin theta` = 2 + cot2θ हे सिद्ध करा.