Advertisements
Advertisements
प्रश्न
sec2θ + cosec2θ = sec2θ × cosec2θ हे सिद्ध करा.
उत्तर
डावी बाजू = sec2θ + cosec2θ
= `1/(cos^2theta) + 1/(sin^2theta)`
= `(sin^2theta + cos^2theta)/(cos^2theta*sin^2theta)`
= `1/(cos^2theta*sin^2theta)` ......[∵ sin2θ + cos2θ = 1]
= `1/(cos^2theta) xx 1/(sin^2theta)`
= sec2θ × cosec2θ
= उजवी बाजू
∴ sec2θ + cosec2θ = sec2θ × cosec2θ
APPEARS IN
संबंधित प्रश्न
sec4θ - cos4θ = 1 - 2cos2θ
sec4A(1 - sin4A) - 2tan2A = 1
खालील प्रश्नासाठी उत्तराचा योग्य पर्याय निवडा.
sec2θ – tan2θ = ?
जर tan θ + cot θ = 2, तर tan2θ + cot2θ = ?
cot2θ × sec2θ = cot2θ + 1 हे सिद्ध करा.
`costheta/(1 + sintheta) = (1 - sintheta)/(costheta)` हे सिद्ध करा.
`(sintheta + "cosec" theta)/sin theta` = 2 + cot2θ हे सिद्ध करा.
`(1 + sec "A")/"sec A" = (sin^2"A")/(1 - cos"A")` हे सिद्ध करा.
`"cot A"/(1 - tan "A") + "tan A"/(1 - cot"A")` = 1 + tan A + cot A = sec A . cosec A + 1 हे सिद्ध करा.
जर tan θ – sin2θ = cos2θ, तर sin2θ = `1/2` हे दाखवा.