Advertisements
Advertisements
प्रश्न
sec2θ + cosec2θ = sec2θ × cosec2θ हे सिद्ध करा.
उत्तर
डावी बाजू = sec2θ + cosec2θ
= `1/(cos^2theta) + 1/(sin^2theta)`
= `(sin^2theta + cos^2theta)/(cos^2theta*sin^2theta)`
= `1/(cos^2theta*sin^2theta)` ......[∵ sin2θ + cos2θ = 1]
= `1/(cos^2theta) xx 1/(sin^2theta)`
= sec2θ × cosec2θ
= उजवी बाजू
∴ sec2θ + cosec2θ = sec2θ × cosec2θ
APPEARS IN
संबंधित प्रश्न
cot θ + tan θ = cosec θ sec θ
`1/(secθ - tanθ)` = secθ + tanθ
sinθ × cosecθ = किती?
`1/(1 - sinθ) + 1/(1 + sinθ)` = 2sec2θ
जर 1 – cos2θ = `1/4`, तर θ = ?
cos2θ . (1 + tan2θ) = 1 हे सिद्ध करण्यासाठी खालील कृती पूर्ण करा.
कृती: डावी बाजू = `square`
= `cos^2theta xx square` .........`[1 + tan^2theta = square]`
= `(cos theta xx square)^2`
= 12
= 1
= उजवी बाजू
`"tan A"/"cot A" = (sec^2"A")/("cosec"^2"A")` हे सिद्ध करा.
`(cos^2theta)/(sintheta) + sintheta` = cosec θ हे सिद्ध करा.
sin2A . tan A + cos2A . cot A + 2 sin A . cos A = tan A + cot A हे सिद्ध करा.
cotθ + tanθ = cosecθ × secθ हे सिद्ध करण्यासाठी खालील कृती पूर्ण करा.
कृती:
डावी बाजू = cotθ + tanθ
= `costheta/sintheta + square/costheta`
= `(square + sin^2theta)/(sintheta xx costheta)`
= `1/(sintheta xx costheta)` ......`because square`
= `1/sintheta xx 1/costheta`
= `square xx sectheta`
डावी बाजू = उजवी बाजू