Advertisements
Advertisements
प्रश्न
cot2θ × sec2θ = cot2θ + 1 हे सिद्ध करा.
उत्तर
डावी बाजू = cot2θ × sec2θ
= `(cos^2theta)/(sin^2theta) xx 1/(cos^2theta)`
= `1/(sin^2theta)`
= cosec2θ
= 1 + cot2θ ......[∵ 1 + cot2θ = cosec2θ]
= उजवी बाजू
∴ cot2θ × sec2θ = cot2θ + 1
APPEARS IN
संबंधित प्रश्न
sec4θ - cos4θ = 1 - 2cos2θ
1 + tan2θ = किती?
जर tanθ = 2, तर इतर त्रिकोणमितीय गुणोत्तरांच्या किमती काढा
cot2θ - tan2θ = cosec2θ - sec2θ
खालील प्रश्नासाठी उत्तराचा योग्य पर्याय निवडा.
`(1 + cot^2"A")/(1 + tan^2"A")` = ?
sec2θ − cos2θ = tan2θ + sin2θ हे सिद्ध करा.
`(cos^2theta)/(sintheta) + sintheta` = cosec θ हे सिद्ध करा.
tan2θ – sin2θ = tan2θ × sin2θ हे सिद्ध करण्यासाठी खालील कृती पूर्ण करा.
कृती: डावी बाजू = `square`
= `square (1 - (sin^2theta)/(tan^2theta))`
= `tan^2theta (1 - square/((sin^2theta)/(cos^2theta)))`
= `tan^2theta (1 - (sin^2theta)/1 xx (cos^2theta)/square)`
= `tan^2theta (1 - square)`
= `tan^2theta xx square` .....[1 – cos2θ = sin2θ]
= उजवी बाजू
`(1 + sec "A")/"sec A" = (sin^2"A")/(1 - cos"A")` हे सिद्ध करा.
जर sin θ + cos θ = `sqrt(3)`, तर tan θ + cot θ = 1 हे दाखवा.